Skip to main content
Log in

Merging chemical ecology with bacterial genome mining for secondary metabolite discovery

  • Review
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The integration of chemical ecology and bacterial genome mining can enhance the discovery of structurally diverse natural products in functional contexts. By examining bacterial secondary metabolism in the framework of its ecological niche, insights into the upregulation of orphan biosynthetic pathways and the enhancement of the enzyme substrate supply can be obtained, leading to the discovery of new secondary metabolic pathways that would otherwise be silent or undetected under typical laboratory cultivation conditions. Access to these new natural products (i.e., the chemotypes) facilitates experimental genotype-to-phenotype linkages. Here, we describe certain functional natural products produced by Xenorhabdus and Photorhabdus bacteria with experimentally linked biosynthetic gene clusters as illustrative examples of the synergy between chemical ecology and bacterial genome mining in connecting genotypes to phenotypes through chemotype characterization. These Gammaproteobacteria share a mutualistic relationship with nematodes and a pathogenic relationship with insects and, in select cases, humans. The natural products encoded by these bacteria distinguish their interactions with their animal hosts and other microorganisms in their multipartite symbiotic lifestyles. Though both genera have similar lifestyles, their genetic, chemical, and physiological attributes are distinct. Both undergo phenotypic variation and produce a profuse number of bioactive secondary metabolites. We provide further detail in the context of regulation, production, processing, and function for these genetically encoded small molecules with respect to their roles in mutualism and pathogenicity. These collective insights more widely promote the discovery of atypical orphan biosynthetic pathways encoding novel small molecules in symbiotic systems, which could open up new avenues for investigating and exploiting microbial chemical signaling in host–bacteria interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Akhurst RJ (1980) Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. J Gen Microbiol 121:303–309

    Google Scholar 

  2. Bian X, Fu J, Plaza A, Herrmann J, Pistorius D, Stewart AF, Zhang Y, Muller R (2013) In vivo evidence for a prodrug activation mechanism during colibactin maturation. Chem Biochem 14(10):1194–1197

    CAS  Google Scholar 

  3. Bian X, Plaza A, Zhang Y, Muller R (2012) Luminmycins A-C, cryptic natural products from Photorhabdus luminescens identified by heterologous expression in Escherichia coli. J Nat Prod 75(9):1652–1655

    CAS  PubMed  Google Scholar 

  4. Blin K, Medema MH, Kazempour D, Fischbach MA, Breitling R, Takano E, Weber T (2013) AntiSMASH 2.0—a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Res 41:W204–W212

    PubMed  PubMed Central  Google Scholar 

  5. Bode HB (2009) Entomopathogenic bacteria as a source of secondary metabolites. Curr Opin Chem Biol 13(2):224–230

    CAS  PubMed  Google Scholar 

  6. Bode HB, Bethe B, Hofs R, Zeeck A (2002) Big effects from small changes: possible ways to explore nature’s chemical diversity. Chem Biochem 3(7):619–627

    CAS  Google Scholar 

  7. Brachmann AO, Bode HB (2013) Identification and bioanalysis of natural products from insect symbionts and pathogens. Adv Biochem Eng Biot. doi:10.1007/10_2013_192

    Google Scholar 

  8. Brachmann AO, Joyce SA, Jenke-Kodama H, Schwar G, Clarke DJ, Bode HB (2007) A type II polyketide synthase is responsible for anthraquinone biosynthesis in Photorhabdus luminescens. Chem Biochem 8(14):1721–1728

    CAS  Google Scholar 

  9. Brachmann AO, Reimer D, Lorenzen W, Augusto Alonso E, Kopp Y, Piel J, Bode HB (2012) Reciprocal cross talk between fatty acid and antibiotic biosynthesis in a nematode symbiont. Angew Chem Int Ed 51(48):12086–12089

    CAS  Google Scholar 

  10. Brady SF, Bauer JD, Clarke-Pearson MF, Daniels R (2007) Natural products from isnA-containing biosynthetic gene clusters recovered from the genomes of cultured and uncultured bacteria. J Am Chem Soc 129(40):12102–12103

    CAS  PubMed  Google Scholar 

  11. Brady SF, Simmons L, Kim JH, Schmidt EW (2009) Metagenomic approaches to natural products from free-living and symbiotic organisms. Nat Prod Rep 26(11):1488–1503

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Brotherton CA, Balskus EP (2013) A prodrug resistance mechanism is involved in colibactin biosynthesis and cytotoxicity. J Am Chem Soc 135(9):3359–3362

    CAS  PubMed  Google Scholar 

  13. Chan YA, Boyne MT 2nd, Podevels AM, Klimowicz AK, Handelsman J, Kelleher NL, Thomas MG (2006) Hydroxymalonyl-acyl carrier protein (ACP) and aminomalonyl-ACP are two additional type I polyketide synthase extender units. Proc Natl Acad Sci USA 103(39):14349–14354

    CAS  PubMed  Google Scholar 

  14. Chaston JM, Suen G, Tucker SL, Andersen AW, Bhasin A, Bode E, Bode HB et al (2011) The entomopathogenic bacterial endosymbionts Xenorhabdus and Photorhabdus: convergent lifestyles from divergent genomes. PLoS One 6(11):e27909

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Choulet F, Aigle B, Gallois A, Mangenot S, Gerbaud C, Truong C, Francou FX, Fourrier C, Guerineau M, Decaris B, Barbe V, Pernodet JL, Leblond P (2006) Evolution of the terminal regions of the Streptomyces linear chromosome. Mol Biol Evol 23(12):2361–2369

    CAS  PubMed  Google Scholar 

  16. Ciche TA, Blackburn M, Carney JR, Ensign JC (2003) Photobactin: a catechol siderophore produced by Photorhabdus luminescens, an entomopathogen mutually associated with Heterorhabditis bacteriophora NC1 nematodes. Appl Environ Microbiol 69(8):4706–4713

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Clarke DJ (2008) Photorhabdus: a model for the analysis of pathogenicity and mutualism. Cell Microbiol 10(11):2159–2167

    CAS  PubMed  Google Scholar 

  18. Cocito C (1979) Antibiotics of the virginiamycin family, inhibitors which contain synergistic components. Microbiol Rev 43(2):145–192

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Copping LG, Duke SO (2007) Natural products that have been used commercially as crop protection agents. Pest Manag Sci 63(6):524–554

    CAS  PubMed  Google Scholar 

  20. Costa SC, Girard PA, Brehelin M, Zumbihl R (2009) The emerging human pathogen Photorhabdus asymbiotica is a facultative intracellular bacterium and induces apoptosis of macrophage-like cells. Infect Immun 77(3):1022–1030

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Cowles KN, Cowles CE, Richards GR, Martens EC, Goodrich-Blair H (2007) The global regulator Lrp contributes to mutualism, pathogenesis and phenotypic variation in the bacterium Xenorhabdus nematophila. Cell Microbiol 9(5):1311–1323

    CAS  PubMed  Google Scholar 

  22. Craig JW, Brady SF (2011) Discovery of a metagenome-derived enzyme that produces branched-chain acyl-(acyl-carrier-protein)s from branched-chain alpha-keto acids. Chem Biochem 12(12):1849–1853

    CAS  Google Scholar 

  23. Crawford JM, Clardy J (2011) Bacterial symbionts and natural products. Chem Commun 47(27):7559–7566

    CAS  Google Scholar 

  24. Crawford JM, Kontnik R, Clardy J (2010) Regulating alternative lifestyles in entomopathogenic bacteria. Curr Biol 20(1):69–74

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Crawford JM, Mahlstedt SA, Malcolmson SJ, Clardy J, Walsh CT (2011) Dihydrophenylalanine: a prephenate-derived Photorhabdus luminescens antibiotic and intermediate in dihydrostilbene biosynthesis. Chem Biol 18(9):1102–1112

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Crawford JM, Portmann C, Kontnik R, Walsh CT, Clardy J (2011) NRPS substrate promiscuity diversifies the xenematides. Org Lett 13(19):5144–5147

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Crawford JM, Portmann C, Zhang X, Roeffaers MB, Clardy J (2012) Small molecule perimeter defense in entomopathogenic bacteria. Proc Natl Acad Sci USA 109(27):10821–10826

    CAS  PubMed  Google Scholar 

  28. Crosa JH, Walsh CT (2002) Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol Mol Biol Rev 66(2):223–249

    CAS  PubMed  PubMed Central  Google Scholar 

  29. D’Onofrio A, Crawford JM, Stewart EJ, Witt K, Gavrish E, Epstein S, Clardy J, Lewis K (2010) Siderophores from neighboring organisms promote the growth of uncultured bacteria. Chem Biol 17(3):254–264

    PubMed  PubMed Central  Google Scholar 

  30. Daniela R, Klaas MP, Marco T, Peter G, Helge BB (2011) A natural prodrug activation mechanism in nonribosomal peptide synthesis. Nat Chem Biol 7(12):888–890

    Google Scholar 

  31. Demain AL (2013) Importance of microbial natural products and the need to revitalize their discovery. J Ind Microbiol Biot

  32. Dobrindt U, Hochhut B, Hentschel U, Hacker J (2004) Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol 2(5):414–424

    CAS  PubMed  Google Scholar 

  33. Dongjin P (2009) Genetic analysis of xenocoumacin antibiotic production in the mutualistic bacterium Xenorhabdus nematophila. Mol Microbiol 73(5):938–949

    Google Scholar 

  34. Duchaud E, Rusniok C, Frangeul L, Buchrieser C, Givaudan A, Taourit S, Bocs S, Boursaux-Eude C, Chandler M, Charles JF, Dassa E, Derose R, Derzelle S, Freyssinet G, Gaudriault S, Medigue C, Lanois A, Powell K, Siguier P, Vincent R, Wingate V, Zouine M, Glaser P, Boemare N, Danchin A, Kunst F (2003) The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nat Biotechnol 21(11):1307–1313

    CAS  PubMed  Google Scholar 

  35. Eleftherianos I, Boundy S, Joyce SA, Aslam S, Marshall JW, Cox RJ, Simpson TJ, Clarke DJ, Ffrench-Constant RH, Reynolds SE (2007) An antibiotic produced by an insect-pathogenic bacterium suppresses host defenses through phenoloxidase inhibition. Proc Natl Acad Sci USA 104(7):2419–2424

    CAS  PubMed  Google Scholar 

  36. Eleftherianos I, Ffrench-Constant RH, Clarke DJ, Dowling AJ, Reynolds SE (2010) Dissecting the immune response to the entomopathogen Photorhabdus. Trends Microbiol 18(12):552–560

    CAS  PubMed  Google Scholar 

  37. Fedorova ND, Moktali V, Medema MH (2012) Bioinformatics approaches and software for detection of secondary metabolic gene clusters. Method Mol Biol 944:23–45

    CAS  Google Scholar 

  38. Fischbach MA, Walsh CT, Clardy J (2008) The evolution of gene collectives: how natural selection drives chemical innovation. Proc Natl Acad Sci USA 105(12):4601–4608

    CAS  PubMed  Google Scholar 

  39. Fraenkel GS (1959) The raison d’ĕtre of secondary plant substances: these odd chemicals arose as a means of protecting plants from insects and now guide insects to food. Science 129(3361):1466–1470

    Google Scholar 

  40. Franke S, Ibarra F, Schulz CM, Twele R, Poldy J, Barrow RA, Peakall R, Schiestl FP, Francke W (2009) The discovery of 2,5-dialkylcyclohexan-1,3-diones as a new class of natural products. Proc Natl Acad Sci USA 106(22):8877–8882

    CAS  PubMed  Google Scholar 

  41. Fu J, Bian X, Hu S, Wang H, Huang F, Seibert PM, Plaza A, Xia L, Muller R, Stewart AF, Zhang Y (2012) Full-length RecE enhances linear–linear homologous recombination and facilitates direct cloning for bioprospecting. Nat Biotechnol 30(5):440–446

    CAS  PubMed  Google Scholar 

  42. Fuchs SW, Bozhuyuk KA, Kresovic D, Grundmann F, Dill V, Brachmann AO, Waterfield NR, Bode HB (2013) Formation of 1,3-cyclohexanediones and resorcinols catalyzed by a widely occuring ketosynthase. Angew Chemie 52(15):4108–4112

    CAS  Google Scholar 

  43. Fuchs SW, Proschak A, Jaskolla TW, Karas M, Bode HB (2011) Structure elucidation and biosynthesis of lysine-rich cyclic peptides in Xenorhabdus nematophila. Org Biomol Chem 9(9):3130–3132

    CAS  PubMed  Google Scholar 

  44. Gaudriault S, Duchaud E, Lanois A, Canoy AS, Bourot S, Derose R, Kunst F, Boemare N, Givaudan A (2006) Whole-genome comparison between Photorhabdus strains to identify genomic regions involved in the specificity of nematode interaction. J Bacteriol 188(2):809–814

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Gerrard J, Waterfield N, Vohra R, Ffrench-Constant R (2004) Human infection with Photorhabdus asymbiotica: an emerging bacterial pathogen. Microbes Infect 6(2):229–237

    CAS  PubMed  Google Scholar 

  46. Gerrard JG, Joyce SA, Clarke DJ, Ffrench-Constant RH, Nimmo GR, Looke DF, Feil EJ, Pearce L, Waterfield NR (2006) Nematode symbiont for Photorhabdus asymbiotica. Emerg Infect Dis 12(10):1562–1564

    PubMed  Google Scholar 

  47. Gerrard JG, Waterfield NR, Sanchez-Contreeras M (2011) Photorhabdus asymbiotica: shedding light on a human pathogenic bioluminescent bacterium. Clin Microbiol Newslett 33(14):103–110

    Google Scholar 

  48. Goodrich-Blair H (2007) They’ve got a ticket to ride: Xenorhabdus nematophila–Steinernema carpocapsae symbiosis. Curr Opin Microbiol 10(3):225–230

    CAS  PubMed  Google Scholar 

  49. Goodrich-Blair H, Clarke DJ (2007) Mutualism and pathogenesis in Xenorhabdus and Photorhabdus: two roads to the same destination. Mol Microbiol 64(2):260–268

    CAS  PubMed  Google Scholar 

  50. Griffiths GL, Sigel SP, Payne SM, Neilands JB (1984) Vibriobactin, a siderophore from Vibrio cholerae. J Biol Chem 259(1):383–385

    CAS  PubMed  Google Scholar 

  51. Gross H, Loper JE (2009) Genomics of secondary metabolite production by Pseudomonas spp. Nat Prod Rep 26(11):1408–1446

    CAS  PubMed  Google Scholar 

  52. Gualtieri M, Aumelas A, Thaler JO (2009) Identification of a new antimicrobial lysine-rich cyclolipopeptide family from Xenorhabdus nematophila. J Antibiot 62(6):295–302

    CAS  PubMed  Google Scholar 

  53. Hacker J, Kaper JB (2000) Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol 54:641–679

    CAS  PubMed  Google Scholar 

  54. Hartmann T (2004) Plant-derived secondary metabolites as defensive chemicals in herbivorous insects: a case study in chemical ecology. Planta 219(1):1–4

    CAS  PubMed  Google Scholar 

  55. Hartmann T (2008) The lost origin of chemical ecology in the late 19th century. Proc Natl Acad Sci USA 105(12):4541–4546

    CAS  PubMed  Google Scholar 

  56. Heermann R, Fuchs TM (2008) Comparative analysis of the Photorhabdus luminescens and the Yersinia enterocolitica genomes: uncovering candidate genes involved in insect pathogenicity. BMC Genomics 9:40

    PubMed  PubMed Central  Google Scholar 

  57. Henderson DP, Payne SM (1994) Vibrio cholerae iron transport systems: roles of heme and siderophore iron transport in virulence and identification of a gene associated with multiple iron transport systems. Infect Immun 62(11):5120–5125

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Hentschel U, Piel J, Degnan SM, Taylor MW (2012) Genomic insights into the marine sponge microbiome. Nat Rev 10(9):641–654

    CAS  Google Scholar 

  59. Herbert EE, Goodrich-Blair H (2007) Friend and foe: the two faces of Xenorhabdus nematophila. Nat Rev 5(8):634–646

    CAS  Google Scholar 

  60. Hu K, Li J, Webster JM (1997) Quantitative analysis of a bacteria-derived antibiotic in nematode-infected insects using HPLC-UV and TLC-UV methods. J Chromatogr 703(1–2):177–183

    CAS  Google Scholar 

  61. Hu K, Webster JM (2000) Antibiotic production in relation to bacterial growth and nematode development in PhotorhabdusHeterorhabditis infected Galleria mellonella larvae. FEMS Microb Lett 189(2):219–223

    CAS  Google Scholar 

  62. Hung KY, Harris PW, Heapy AM, Brimble MA (2011) Synthesis and assignment of stereochemistry of the antibacterial cyclic peptide xenematide. Org Biomol Chem 9(1):236–242

    CAS  PubMed  Google Scholar 

  63. Jenke-Kodama H, Muller R, Dittmann E (2008) Evolutionary mechanisms underlying secondary metabolite diversity. Prog Drug Res 65(119):121–140

    Google Scholar 

  64. Jensen PR (2010) Linking species concepts to natural product discovery in the post-genomic era. J Ind Microbiol 37(3):219–224

    CAS  Google Scholar 

  65. Joyce SA, Brachmann AO, Glazer I, Lango L, Schwar G, Clarke DJ, Bode HB (2008) Bacterial biosynthesis of a multipotent stilbene. Angew Chem Int Ed 47(10):1942–1945

    CAS  Google Scholar 

  66. Joyce SA, Clarke DJ (2003) A hexA homologue from Photorhabdus regulates pathogenicity, symbiosis and phenotypic variation. Mol Microbiol 47(5):1445–1457

    CAS  PubMed  Google Scholar 

  67. Kalaitzis JA, Lauro FM, Neilan BA (2009) Mining cyanobacterial genomes for genes encoding complex biosynthetic pathways. Nat Prod Rep 26(11):1447–1465

    CAS  PubMed  Google Scholar 

  68. Kelley LA, Sternberg MJ (2009) Protein structure prediction on the web: a case study using the Phyre server. Nat Protoc 4(3):363–371

    CAS  PubMed  Google Scholar 

  69. Kevany BM, Rasko DA, Thomas MG (2009) Characterization of the complete zwittermicin A biosynthesis gene cluster from Bacillus cereus. Appl Environ Microbiol 75(4):1144–1155

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Khush RS, Lemaitre B (2000) Genes that fight infection: what the Drosophila genome says about animal immunity. Trends Genet 16(10):442–449

    CAS  PubMed  Google Scholar 

  71. Kontnik R, Crawford JM, Clardy J (2010) Exploiting a global regulator for small molecule discovery in Photorhabdus luminescens. ACS Chem Biol 5(7):659–665

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Kroken S, Glass NL, Taylor JW, Yoder OC, Turgeon BG (2003) Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc Natl Acad Sci USA 100(26):15670–15675

    CAS  PubMed  Google Scholar 

  73. Kwan JC, Donia MS, Han AW, Hirose E, Haygood MG, Schmidt EW (2012) Genome streamlining and chemical defense in a coral reef symbiosis. Proc Natl Acad Sci USA 109(50):20655–20660

    CAS  PubMed  Google Scholar 

  74. Lang G, Kalvelage T, Peters A, Wiese J, Imhoff JF (2008) Linear and cyclic peptides from the entomopathogenic bacterium Xenorhabdus nematophilus. J Nat Prod 71(6):1074–1077

    CAS  PubMed  Google Scholar 

  75. Lanois A, Ogier JC, Gouzy J, Laroui C, Rouy Z, Givaudan A, Gaudriault S (2013) Draft genome sequence and annotation of the entomopathogenic bacterium Xenorhabdus nematophila strain F1. Genome Announc 1(3):e00342-13. doi:10.1128/genomeA.00342-13

  76. Lewis K, Epstein S, D’Onofrio A, Ling LL (2010) Uncultured microorganisms as a source of secondary metabolites. J Antibiot 63(8):468–476

    Google Scholar 

  77. Li J, Chen G, Wu H, Webster JM (1995) Identification of two pigments and a hydroxystilbene antibiotic from Photorhabdus luminescens. Appl Environ Microbiol 61(12):4329–4333

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Lin H-Y, Rao YK, Wu W-S, Tzeng Y-M (2007) Ferrous ion enhanced lipopeptide antibiotic Iturin A production from Bacillus amyloliquefaciens B128. Int J Appl Sci Eng 5(2):123–132

    Google Scholar 

  79. Luo Y, Ruan LF, Zhao CM, Wang CX, Peng DH, Sun M (2011) Validation of the intact zwittermicin A biosynthetic gene cluster and discovery of a complementary resistance mechanism in Bacillus thuringiensis. Antimicrob Agents Chemother 55(9):4161–4169

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Mahlstedt S, Fielding EN, Moore BS, Walsh CT (2010) Prephenate decarboxylases: a new prephenate-utilizing enzyme family that performs nonaromatizing decarboxylation en route to diverse secondary metabolites. Biochemistry 49(42):9021–9023

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Mahlstedt SA, Walsh CT (2010) Investigation of anticapsin biosynthesis reveals a four-enzyme pathway to tetrahydrotyrosine in Bacillus subtilis. Biochemistry 49(5):912–923

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Martinez-Molina E, Del Rio LA, Olivares J (1976) Copper and iron as determinant factors of antibiotic production by Pseudomonas reptilivora. J Appl Bacteriol 41(1):69–74

    CAS  PubMed  Google Scholar 

  83. Mast Y, Weber T, Golz M, Ort-Winklbauer R, Gondran A, Wohlleben W, Schinko E (2011) Characterization of the ‘pristinamycin supercluster’ of Streptomyces pristinaespiralis. Microb Biotechnol 4(2):192–206

    CAS  PubMed  Google Scholar 

  84. Maxwell PW, Chen G, Webster JM, Dunphy GB (1994) Stability and activities of antibiotics produced during infection of the insect Galleria mellonella by two isolates of Xenorhabdus nematophilus. Appl Environ Microbiol 60(2):715–721

    CAS  PubMed  PubMed Central  Google Scholar 

  85. McInerney BV, Gregson RP, Lacey MJ, Akhurst RJ, Lyons GR, Rhodes SH, Smith DR, Engelhardt LM, White AH (1991) Biologically active metabolites from Xenorhabdus spp., part 1. Dithiolopyrrolone derivatives with antibiotic activity. J Nat Prod 54(3):774–784

    CAS  PubMed  Google Scholar 

  86. Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, Weber T, Takano E, Breitling R (2011) AntiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 39:W339–W346

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Medema MH, Breitling R, Bovenberg R, Takano E (2011) Exploiting plug-and-play synthetic biology for drug discovery and production in microorganisms. Nat Rev Microbiol 9(2):131–137

    CAS  PubMed  Google Scholar 

  88. Medema MH, Trefzer A, Kovalchuk A, van den Berg M, Muller U, Heijne W, Wu L, Alam MT, Ronning CM, Nierman WC, Bovenberg RA, Breitling R, Takano E (2010) The sequence of a 1.8-mb bacterial linear plasmid reveals a rich evolutionary reservoir of secondary metabolic pathways. Genome Biol Evol 2:212–224

    PubMed  PubMed Central  Google Scholar 

  89. Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71(3):413–451

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Mitchell W (2011) Natural products from synthetic biology. Curr Opin Chem Biol 15(4):505–515

    CAS  PubMed  Google Scholar 

  91. Molnar K, Farkas E (2010) Current results on biological activities of lichen secondary metabolites: a review. Z Naturforsch 65(3–4):157–173

    Google Scholar 

  92. Müller-Schwarze D (2006) Chemical ecology of vertebrates. Cambridge University Press, Cambridge

    Google Scholar 

  93. Murfin KE, Dillman AR, Foster JM, Bulgheresi S, Slatko BE, Sternberg PW, Goodrich-Blair H (2012) Nematode-bacterium symbioses—cooperation and conflict revealed in the “omics” age. Biol Bull 223(1):85–102

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270(45):26723–26726

    CAS  PubMed  Google Scholar 

  95. Nett M, Ikeda H, Moore BS (2009) Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat Prod Rep 26(11):1362–1384

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75(3):311–335

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Nougayrede JP, Homburg S, Taieb F, Boury M, Brzuszkiewicz E, Gottschalk G, Buchrieser C, Hacker J, Dobrindt U, Oswald E (2006) Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 313(5788):848–851

    CAS  PubMed  Google Scholar 

  98. Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405(6784):299–304

    CAS  PubMed  Google Scholar 

  99. Ogier JC, Calteau A, Forst S, Goodrich-Blair H, Roche D, Rouy Z, Suen G, Zumbihl R, Givaudan A, Tailliez P, Medigue C, Gaudriault S (2010) Units of plasticity in bacterial genomes: new insight from the comparative genomics of two bacteria interacting with invertebrates, Photorhabdus and Xenorhabdus. BMC Genomics 11:568

    PubMed  PubMed Central  Google Scholar 

  100. Oku H, Kaneda T (1988) Biosynthesis of branched-chain fatty acids in Bacillus subtilis. A decarboxylase is essential for branched-chain fatty acid synthetase. J Biol Chem 263(34):18386–18396

    CAS  PubMed  Google Scholar 

  101. Ong SA, Peterson T, Neilands JB (1979) Agrobactin, a siderophore from Agrobacterium tumefaciens. J Biol Chem 254(6):1860–1865

    CAS  PubMed  Google Scholar 

  102. Oves-Costales D, Kadi N, Challis GL (2009) The long-overlooked enzymology of a nonribosomal peptide synthetase-independent pathway for virulence-conferring siderophore biosynthesis. Chem Commun 43:6530–6541

    Google Scholar 

  103. Pawlik JR (2011) The chemical ecology of sponges on Caribbean reefs: natural products shape natural systems. Bioscience 61(11):888–898

    Google Scholar 

  104. Penn K, Jenkins C, Nett M, Udwary DW, Gontang EA, McGlinchey RP, Foster B, Lapidus A, Podell S, Allen EE, Moore BS, Jensen PR (2009) Genomic islands link secondary metabolism to functional adaptation in marine Actinobacteria. ISME J 3(10):1193–1203

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Perham RN (1991) Domains, motifs, and linkers in 2-oxo acid dehydrogenase multienzyme complexes: a paradigm in the design of a multifunctional protein. Biochemistry 30(35):8501–8512

    CAS  PubMed  Google Scholar 

  106. Phelan VV, Liu WT, Pogliano K, Dorrestein PC (2012) Microbial metabolic exchange—the chemotype-to-phenotype link. Nat Chem Biol 8(1):26–35

    CAS  Google Scholar 

  107. Pinchuk IV, Bressollier P, Sorokulova IB, Verneuil B, Urdaci MC (2002) Amicoumacin antibiotic production and genetic diversity of Bacillus subtilis strains isolated from different habitats. Res Microbiol 153(5):269–276

    CAS  PubMed  Google Scholar 

  108. Proctor RA, von Eiff C, Kahl BC, Becker K, McNamara P, Herrmann M, Peters G (2006) Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat Rev 4(4):295–305

    CAS  Google Scholar 

  109. Purdy AE, Watnick PI (2011) Spatially selective colonization of the arthropod intestine through activation of Vibrio cholerae biofilm formation. Proc Natl Acad Sci USA 108(49):19737–19742

    CAS  PubMed  Google Scholar 

  110. Rath CM, Dorrestein PC (2012) The bacterial chemical repertoire mediates metabolic exchange within gut microbiomes. Curr Opin Microbiol 15(2):147–154

    CAS  PubMed  Google Scholar 

  111. Reimer D (2009) A new type of pyrrolidine biosynthesis is involved in the late steps of xenocoumacin production in Xenorhabdus nematophila. Chem Biochem 10(12):1997–2001

    CAS  Google Scholar 

  112. Richards GR, Goodrich-Blair H (2009) Masters of conquest and pillage: Xenorhabdus nematophila global regulators control transitions from virulence to nutrient acquisition. Cell Microbiol 11:1025–1033

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Richardson WH, Schmidt TM, Nealson KH (1988) Identification of an anthraquinone pigment and a hydroxystilbene antibiotic from Xenorhabdus luminescens. Appl Environ Microbiol 54(6):1602–1605

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Rollins MJ, Jensen SE, Westlake DWS (1989) Regulation of antibiotic production by iron and oxygen during defined medium fermentations of Streptomyces clavuligerus. Appl Environ Microbiol 31:390–396

    CAS  Google Scholar 

  115. Sanchez JF, Somoza AD, Keller NP, Wang CC (2012) Advances in Aspergillus secondary metabolite research in the post-genomic era. Nat Prod Rep 29(3):351–371

    CAS  PubMed  Google Scholar 

  116. Scherlach K, Graupner K, Hertweck C (2013) Molecular bacterial–fungal interactions with impact on the environment, food and medicine. Annu Rev Microbiol. doi:10.1146/annurev-micro-092412-155702

  117. Schmidt EW, Donia MS, McIntosh JA, Fricke WF, Ravel J (2012) Origin and variation of tunicate secondary metabolites. J Nat Prod 75(2):295–304

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Somvanshi VS, Kaufmann-Daszczuk B, Kim KS, Mallon S, Ciche TA (2010) Photorhabdus phase variants express a novel fimbrial locus, mad, essential for symbiosis. Mol Microbiol 77:1021–1038

    CAS  Google Scholar 

  119. Somvanshi VS, Sloup RE, Crawford JM, Martin AR, Heidt AJ, Kim KS, Clardy J, Ciche TA (2012) A single promoter inversion switches Photorhabdus between pathogenic and mutualistic states. Science 337(6090):88–93

    CAS  PubMed  Google Scholar 

  120. Stein ML, Beck P, Kaiser M, Dudler R, Becker CF, Groll M (2012) One-shot NMR analysis of microbial secretions identifies highly potent proteasome inhibitor. Proc Natl Acad Sci USA 109(45):18367–18371

    CAS  PubMed  Google Scholar 

  121. Stocker-Worgotter E (2008) Metabolic diversity of lichen-forming ascomycetous fungi: culturing, polyketide and shikimate metabolite production, and PKS genes. Nat Prod Rep 25(1):188–200

    PubMed  Google Scholar 

  122. Sugar DR, Murfin KE, Chaston JM, Andersen AW, Richards GR, deLeon L, Baum JA, Clinton WP, Forst S, Goldman BS, Krasomil-Osterfeld KC, Slater S, Stock SP, Goodrich-Blair H (2012) Phenotypic variation and host interactions of Xenorhabdus bovienii SS-2004, the entomopathogenic symbiont of Steinernema jollieti nematodes. Environ Microbiol 14(4):924–939

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Theodore CM, King JB, You J, Cichewicz RH (2012) Production of cytotoxic glidobactins/luminmycins by Photorhabdus asymbiotica in liquid media and live crickets. J Nat Prod 75(11):2007–2011

    CAS  Google Scholar 

  124. Tounsi S, Blight M, Jaoua S, de Lima Pimenta A (2006) From insects to human hosts: identification of major genomic differences between entomopathogenic strains of Photorhabdus and the emerging human pathogen Photorhabdus asymbiotica. IJMM 296(8):521–530

    CAS  PubMed  Google Scholar 

  125. Uvell H, Engstrom Y (2007) A multilayered defense against infection: combinatorial control of insect immune genes. Trends Genet 23(7):342–349

    CAS  PubMed  Google Scholar 

  126. Vallenet D, Engelen S, Mornico D, Cruveiller S, Fleury L, Lajus A, Rouy Z, Roche D, Salvignol G, Scarpelli C, Medigue C (2009) MicroScope: a platform for microbial genome annotation and comparative genomics. Database (Oxford) 2009:bap021

    Google Scholar 

  127. Walsh CT, O’Brien RV, Khosla C (2013) Nonproteinogenic amino acid building blocks for nonribosomal peptide and hybrid polyketide scaffolds. Angew Chem Int Ed 52(28):7098–7124

    CAS  Google Scholar 

  128. Wandersman C, Delepelaire P (2004) Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol 58:611–647

    CAS  PubMed  Google Scholar 

  129. Wang G, Jia S, Wang T, Chen L, Song Q, Li W (2011) Effect of ferrous ion on epsilon-poly-l-lysine biosynthesis by Streptomyces diastatochromogenes CGMCC3145. Curr Microbiol 62(3):1062–1067

    CAS  PubMed  Google Scholar 

  130. Waterfield NR, Ciche T, Clarke D (2009) Photorhabdus and a host of hosts. Annu Rev Microbiol 63:557–574

    CAS  PubMed  Google Scholar 

  131. Waterfield NR, Sanchez-Contreras M, Eleftherianos I, Dowling A, Wilkinson P, Parkhill J, Thomson N, Reynolds SE, Bode HB, Dorus S, Ffrench-Constant RH (2008) Rapid virulence annotation (RVA): identification of virulence factors using a bacterial genome library and multiple invertebrate hosts. Proc Natl Acad Sci USA 105(41):15967–15972

    CAS  PubMed  Google Scholar 

  132. Waterfield NR, Wren BW, Ffrench-Constant RH (2004) Invertebrates as a source of emerging human pathogens. Nat Rev Microbiol 2(10):833–841

    CAS  PubMed  Google Scholar 

  133. Watson RJ, Millichap P, Joyce SA, Reynolds S, Clarke DJ (2010) The role of iron uptake in pathogenicity and symbiosis in Photorhabdus luminescens TT01. BMC Microbiol 10:177

    PubMed  PubMed Central  Google Scholar 

  134. Weissfeld AS, Halliday RJ, Simmons DE, Trevino EA, Vance PH, O’Hara CM, Sowers EG, Kern R, Koy RD, Hodde K, Bing M, Lo C, Gerrard J, Vohra R, Harper J (2005) Photorhabdus asymbiotica, a pathogen emerging on two continents that proves that there is no substitute for a well-trained clinical microbiologist. J Clin Microbiol 43(8):4152–4155

    PubMed  PubMed Central  Google Scholar 

  135. Wenzel SC, Muller R (2009) The impact of genomics on the exploitation of the myxobacterial secondary metabolome. Nat Prod Rep 26(11):1385–1407

    CAS  PubMed  Google Scholar 

  136. Wilkinson P, Waterfield NR, Crossman L, Corton C, Sanchez-Contreras M, Vlisidou I, Barron A, Bignell A, Clark L, Ormond D, Mayho M, Bason N, Smith F, Simmonds M, Churcher C, Harris D, Thompson NR, Quail M, Parkhill J, Ffrench-Constant RH (2009) Comparative genomics of the emerging human pathogen Photorhabdus asymbiotica with the insect pathogen Photorhabdus luminescens. BMC Genomics 10:302

    PubMed  PubMed Central  Google Scholar 

  137. Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64(1):3–19

    CAS  PubMed  Google Scholar 

  138. Winter JM, Behnken S, Hertweck C (2011) Genomics-inspired discovery of natural products. Curr Opin Chem Biol 15(1):22–31

    CAS  PubMed  Google Scholar 

  139. Wyckoff EE, Mey AR, Payne SM (2007) Iron acquisition in Vibrio cholerae. Biometals 20(3–4):405–416

    CAS  PubMed  Google Scholar 

  140. Zhou T (2011) Global transcriptional responses of Bacillus subtilis to xenocoumacin 1. J Appl Microbiol 111(3):652–662

    CAS  PubMed  Google Scholar 

  141. Zotchev SB, Sekurova ON, Katz L (2012) Genome-based bioprospecting of microbes for new therapeutics. Curr Opin Biotechnol 23(6):941–947

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Our work on the discovery of bacterial natural product pathways in functional contexts is supported by the National Institutes of Health (R00-GM097096 and 1DP2CA186575), the Searle Scholars Program (13-SSP-210), and the Damon Runyon Cancer Research Foundation (DFS:05-12). We thank Todd Ciche (Monsanto Company) for a preliminary version of Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason M. Crawford.

Additional information

This manuscript is dedicated to Sir David Hopwood on the occasion of his 80th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vizcaino, M.I., Guo, X. & Crawford, J.M. Merging chemical ecology with bacterial genome mining for secondary metabolite discovery. J Ind Microbiol Biotechnol 41, 285–299 (2014). https://doi.org/10.1007/s10295-013-1356-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-013-1356-5

Keywords

Navigation