Skip to main content
Log in

Production of natural value-added compounds: an insight into the eugenol biotransformation pathway

  • Mini-Review
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

During the past few years, the production of natural value-added compounds from microbial sources has gained tremendous importance. Due to an increase in consumer demand for natural products, various food and pharmaceutical industries are continuously in search of novel metabolites obtained from microbial biotransformation. The exploitation of microbial biosynthetic pathways is both feasible and cost effective in the production of natural compounds. The environmentally compatible nature of these products is one major reason for their increasing demand. Novel approaches for natural product biogeneration will take advantage of the current studies on biotechnology, biochemical pathways and microbiology. The interest of the scientific community has shifted toward the use of microbial bioconversion for the production of valuable compounds from natural substrates. The present review focuses on eugenol biotransformation by microorganisms resulting in the formation of various value-added products such as ferulic acid, coniferyl alcohol, vanillin and vanillic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aragno M, Parola S, Tamagno E (2000) Oxidative derangement in rat synaptosomes induced by hyperglycemia: restorative effect of dehydroepiandosterone treatment. Biochem Pharmacol 60:389–395

    Article  PubMed  CAS  Google Scholar 

  2. Ashengroph M, Nahvi I, Esfahani HZ, Momenbeik F (2011) Pseudomonas resinovorans SPR1, a newly isolated strain with potential of transforming eugenol to vanillin and vanillic acid. New Biotechnol 28:656–664

    Article  CAS  Google Scholar 

  3. Balasubhashini MS, Rukkumani R, Vishwanathan P, Menon VP (2004) Ferulic acid alleviates lipid peroxidation in diabetic rats. Phytother Res 18:310–314

    Article  Google Scholar 

  4. Brandt K, Thewes S, Overhage J, Priefert H, Steinbüchel A (2001) Characterization of the eugenol hydroxylase genes (ehyA/ehyB) from the new eugenol-degrading Pseudomonas sp. strain OPS1. Appl Microbiol Biotechnol 56:724–730

    Article  PubMed  CAS  Google Scholar 

  5. Chiang LC, Ng LT, Chiang W, Chang MY, Lin CC (2003) Immunomodulatory activities of flavonoids, monoterpenoids, triterpenoids, iridoid glycosides and phenolic compounds of Plantago species. Planta Med 69(7):600–604

    Article  PubMed  CAS  Google Scholar 

  6. Cho NS, Rogalski J, Jaszek M, Luterek J, Wojtas WM, Malarczyk E, Fink BM, Leonowicz A (1999) Effect of coniferyl alcohol addition on removal of chlorophenols from water effluent by fungal laccase. J Wood Sci 45(2):174–178

    Article  CAS  Google Scholar 

  7. Emerson RW and Crandall BG (2003) Use of coniferyl aldehydes and alpha-hexyl cinnamic aldehyde against insects and arachnids. EP 080034 B1. http://www.google.com/patents/EP0800344B1?cl=en

  8. Figueroa EMC, Morel MH, Surget A, Asther M, Moukha S, Sigoillot JC, Rouau X (1999) Attempt to cross-link feruloylated arabinoxylans and proteins with a fungal laccase. Food Hydrocolloids 13:65–71

    Article  Google Scholar 

  9. Fry AC, Bonner E, Lewis DL, Johnson RL, Stone MH, Kraemer WJ (1997) The effects of gamma-oryzanol supplementation during resistance exercise training. Int J Sport Nutr 7(4):318–329

    PubMed  CAS  Google Scholar 

  10. Furukawa H, Wiser M, Morita H, Sugio T, Nagasawa T (1998) Purification and characterization of eugenol dehydrogenase from Pseudomonas fluorescens E118. Arch Microbiol 171(1):37–43

    Article  PubMed  CAS  Google Scholar 

  11. Furukawa H, Zenno S, Iwasawa Y, Morita H, Yoshida T, Nagasawa T (2003) Ferulic acid production from clove oil by Pseudomonas fluorescens E118. J Biosci Bioengg 96(4):404–405

    CAS  Google Scholar 

  12. Graf E (1992) Antioxidant potential of ferulic acid. Free Rad Biol Med 13(4):435–448

    Article  PubMed  CAS  Google Scholar 

  13. Guan S, Ge D, Liu TQ, Ma XH, Cui ZF (2009) Protocatechuic acid promotes cell proliferation and reduces basal apoptosis in cultured neural stem cells. Toxicol In Vitro 23:201–208

    Article  PubMed  CAS  Google Scholar 

  14. Harlander S (1994) Source book of flavours. In: Reineccius G (ed) Biotechnology for the production of flavouring materials. Chapman and Hall, New York, pp 151–175

    Google Scholar 

  15. Heinonen M, Rein D, Satue GMT, Huang SW, German JB, Frankel EN (1998) Effect of protein on the antioxidant activity of phenolic compounds in a lecithin-liposome oxidation system. J Agric Food Chem 46:917–922

    Article  CAS  Google Scholar 

  16. Hrazdina G (2006) Aroma production by tissue cultures. J Agric Food Chem 54(4):1116–1123

    Article  PubMed  CAS  Google Scholar 

  17. Ishihara M (1984) Effect of gamma-oryzanol on serum lipid peroxide level and clinical symptoms of patients with climacteric disturbances Asia Oceania. J Obstet Gynaecol 10:317–323

    CAS  Google Scholar 

  18. Ishihara M, Hasegawa M, Taira T, Toyama S (2000) Isolation and antimicrobial activity of feruloyl oligosaccharide ester from pineapple stem residues. J Jpn Soc Food Sci 47:23–29 (Technol—Nippon Shokuhin Kagaku Kogaku Kaishi)

    Article  CAS  Google Scholar 

  19. Kadakol JC, Kamanavalli CM (2010) Biodegradation of eugenol by Bacillus cereus strain PN24. E J Chem 7(S1):S474–S480

    Article  CAS  Google Scholar 

  20. Kanski J, Aksenova M, Stoyanova A, Butterfield DA (2002) Ferulic acid antioxidant protection against hydroxyl and peroxyl radical oxidation in synaptosomal and neuronal cell culture systems in vitro: structure activity studies. J Nutr Biochem 13(5):273–281

    Article  PubMed  CAS  Google Scholar 

  21. Kim SJ, Kim MC, Um JY, Hong SH (2010) The beneficial effect of vanillic acid on ulcerative colitis. Molecules 15:7208–7217

    Article  PubMed  CAS  Google Scholar 

  22. Lambert F, Zucca J, Mane J (2010) System for the production of aromatic molecules in Streptomyces sp. US Patent US2010/0184172 A1. http://www.freepatentsonline.com/20100184172.pdf

  23. Lattanzio V, De Cicco V, Di Venere D, Lima G, Salerno M (1994) Antifungal activity of phenolics against fungi commonly encountered during storage. Italian J Food Sci 1:23–30

    Google Scholar 

  24. Leffingwell & Associates (2010) Flavour and fragrance industry leaders. Leffingwell report 2011, retrieve on 2012 June http://www.leffingwell.com/top_10.htm

  25. Li GL, Wang JJ, Wang JZ, Liu YY, Jin Y (2003) Effect of ferulic acid on the proliferation of nerve cells of retinas in vitro. Zhonghua Yan Ke Za Zhi 39(11):650–654

    PubMed  Google Scholar 

  26. Longo MA, Sanroman MA (2006) Production of food aroma compounds. Food Technol Biotechnol 44(3):335–353

    CAS  Google Scholar 

  27. Murase Y, Iishima H (1963) Clinical studies of oral administration of gamma-oryzanol on climacteric complaints and its syndrome. Obstet Gynecol Pract 12:147–149

    Google Scholar 

  28. Ogiwara T, Satoh K, Kadoma Y, Murakami Y, Unten S, Atsumi T, Sakagami H, Fujisawa S (2002) Radical scavenging activity and cytotoxicity of ferulic acid. Anticancer Res 22(5):2711–2717

    PubMed  CAS  Google Scholar 

  29. Ou S, Kwok KC (2004) Ferulic acid: pharmaceutical functions, preparation and applications in foods. J Sci Food Agric 84:1261–1269

    Article  CAS  Google Scholar 

  30. Overhage J, Steinbuchel A, Priefert H (2002) Biotransformation of eugenol to ferulic acid by a recombinant strain of Ralstonia eutropha H16. Appl Environ Microbiol 68(9):4315–4321

    Article  PubMed  CAS  Google Scholar 

  31. Overhage J, Steinbuchel A, Priefert H (2003) Highly efficient biotransformation of eugenol to ferulic acid and further conversion to vanillin in recombinant strains of E. coli. Appl Environ Microbiol 69(11):6569–6576

    Article  PubMed  CAS  Google Scholar 

  32. Overhage J, Steinbuchel A, Priefert H (2006) Harnessing eugenol as a substrate for production of aromatic compounds with recombinant strains of Amycolatopsis sp. HR167. J Biotechnol 125:369–376

    Article  PubMed  CAS  Google Scholar 

  33. Phillips T (2008) Genetically modified organisms (GMOs): transgenic crops and recombinant DNA technology. Nature Education 1(1). http://www.nature.com/scitable/topicpage/genetically-modified-organisms-gmos-transgenic-crops-and-732

  34. Philp HA (2003) Hot flashes a review of the literature on alternative and complementary treatment approaches. Altern Med Rev 8(3):284–302

    PubMed  Google Scholar 

  35. Priefert H, Overhage J, Steinbuchel A (1999) Identification and molecular characterization of the eugenol hydroxylase genes (ehyA/ehyB) of Pseudomonas sp. strain HR199. Arch Microbiol 172(6):354–363

    Article  PubMed  CAS  Google Scholar 

  36. Priefert H, Rabenhorst J, Steinbuchel A (2001) Biotechnological production of vanillin. Appl Microbiol Biotechnol 56(3–4):296–314

    Article  PubMed  CAS  Google Scholar 

  37. Rabenhorst J (1996) Production of methoxyphenol type natural aroma chemicals by biotransformation of eugenol with a new Pseudomonas sp. Appl Microbiol Biotechnol 46(5–6):470–474

    Article  CAS  Google Scholar 

  38. Rabenhorst J, Hopp R (1991) Process for production of natural vanillin. European Patent 0405197. http://translationportal.epo.org/emtp/translate/?ACTION=description-retrieval&COUNTRY=EP&ENGINE=google&FORMAT=docdb&KIND=A1&LOCALE=en_EP&NUMBER=0405197&OPS=ops.epo.org&SRCLANG=de&TRGLANG=en

  39. Ramachandra RS, Ravishankar GA (2000) Vanilla flavour: production by conventional and biotechnogical routes. J Sci Food Agric 80(3):289–304

    Article  Google Scholar 

  40. Sahai OM (1994) Plant tissue culture. In: Gabelman A (ed) Bioprocess production of flavour, fragrances and colour ingredients. Wiley, New York, pp 239–275

    Google Scholar 

  41. Sassa S, Kikuchi T, Shinoda H, Suzuki S, Kudo H, Sakamoto S (2003) Preventive effect of ferulic acid on bone loss in ovariectomized rats. In Vivo 17(3):277–280

    PubMed  CAS  Google Scholar 

  42. Savidge RA, Udagama RP (1992) Cell wall bound coniferyl alcohol oxidase associated with lignifications in conifers. Phytochemistry 31(9):2959–2966

    Article  CAS  Google Scholar 

  43. Scragg AH (1997) The production of aromas by plant cell cultures. In: Scheper P (ed) Biotechnology of aroma compounds. Springer, Germany, pp 239–263

    Chapter  Google Scholar 

  44. Serra S, Fuganti C, Brenna E (2005) Biocatalytic preparation of natural flavours and fragrances. Trends Biotechnol 23(4):193–198

    Article  PubMed  CAS  Google Scholar 

  45. Sohn YT, Oh JH (2003) Characterization of physicochemical properties of ferulic acid. Arch Pharm Res 26(12):1002–1008

    Article  PubMed  CAS  Google Scholar 

  46. Srinivasan M, Sudheer AR, Menon VP (2007) Ferulic acid: therapeutic potential through its antioxidant property. J Clin Biochem Nutr 40:92–100

    Article  PubMed  CAS  Google Scholar 

  47. Stead D (1995) The effect of hydroxycinnamic acids and potassium sorbate on the growth of 11 strains of spoilage yeasts. J Appl Bacteriol 78:82–87

    Article  PubMed  CAS  Google Scholar 

  48. Tadasa K (1977) Degradation of eugenol by a microorganism. Agric Biol Chem 41(6):925–929

    Article  CAS  Google Scholar 

  49. Tadasa K, Kayahara H (1983) Initial steps of eugenol degradation pathway of a microorganism. Agric Biol Chem 47(11):2639–2640

    Article  CAS  Google Scholar 

  50. Todas M, Kumura M, Ohnishi S (1991) Effects of phenolcarboxylic acid on superoxide anion and lipid peroxidation induced by superoxide anion. Planta Med 57:8–10

    Article  Google Scholar 

  51. Trombino S, Serini S, Di Nicuolo F, Celleno L, Andò S, Picci N, Calviello G, Palozza P (2004) Antioxidant effect of ferulic acid in isolated membranes and intact cells: synergistic interactions with alpha-tocopherol, beta-carotene, and ascorbic acid. J Agric Food Chem 52(8):2411–2420

    Article  PubMed  CAS  Google Scholar 

  52. Unno T, Kim SJ, Kanaly RA, Ahn JH, Kang SI, Hur HG (2007) Metabolic characterization of newly isolated Pseudomonas nitroreducens Jin1 growing on eugenol and isoeugenol. J Agric Food Chem 55(21):8556–8561

    Article  PubMed  CAS  Google Scholar 

  53. Walton NJ, Mayer MJ, Narbad A (2003) Vanillin. Phytochemistry 63:505–515

    Article  PubMed  CAS  Google Scholar 

  54. Xu P, Hua D, Ma C (2007) Microbial transformation of propenylbenzenes for natural flavour production. Trends Biotechnol 25(12):571–576

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the University Grant Commission [F.No. 37-115/2009 (SR)], New Delhi and Department of Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.

Conflict of interest

The authors declare no conflicts of interest. The authors alone are responsible for the content and writing of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashwati Ghosh Sachan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, S., Sachan, A. & Sachan, S.G. Production of natural value-added compounds: an insight into the eugenol biotransformation pathway. J Ind Microbiol Biotechnol 40, 545–550 (2013). https://doi.org/10.1007/s10295-013-1255-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-013-1255-9

Keywords

Navigation