Skip to main content
Log in

Isolation of natural red colorants from fermented broth using ionic liquid-based aqueous two-phase systems

  • Natural Products
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

There is a growing demand for natural colorants. This is prompting the search for new alternative and “benign” separation systems allowing higher recoveries, extraction yields, and selectivities. This work investigates the use of aqueous two-phase systems (ATPS) based on ionic liquids as extraction processes for the recovery of red colorants from the fermented broth of Penicillium purpurogenum DPUA 1275. Several ATPS based on quaternary ammonium and imidazolium were studied in this work aiming at separating the red colorants produced from the remaining colorants and contaminant proteins present in the fermented broth. The results suggest that the red colorants can be isolated by an appropriate manipulation of some of the process conditions, such as the use of quaternary ammonium with short alkyl chains, alkaline media, and short tie-line lengths (extraction point systems with lower concentrations of ionic liquid). These conditions allow large partition coefficients for the red colorants (K red = 24.4 ± 2.3), high protein removal (60.7 ± 2.8 %) and selectivity parameters (S red/prot = 10.05).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Velmurugan P, Lee YH, Venil CK, Lakshmanaperumalsamy P, Chae JC, Oh BT (2010) Effect of light on growth, intracellular and extracellular pigment production by five pigment-producing filamentous fungi in synthetic medium. J Biosci Bioeng 109:346–350

    Article  PubMed  CAS  Google Scholar 

  2. Mapari SAS, Thrane U, Meyer AS (2010) Fungal polyketide azaphilone pigments as future natural food colorants? Trends Biotechnol 28:300–307

    Article  PubMed  CAS  Google Scholar 

  3. Hajjaj H, Klaebe A, Loret MO, Tzédakis T, Goma G, Blanc PJ (1997) Production and identification of N-glucosylrubropuntacmine and N-glucosylmonascorubramine from Monascus ruber and occurrence of electron donor-acceptor complexes in these red pigments. Appl Environ Microbiol 63:2671–2678

    PubMed  CAS  Google Scholar 

  4. Mapari SAS, Meyer AS, Thrane U (2006) Colorimetric characterization for comparative analyses of fungal pigments and natural food colorants. J Agric Food Chem 54:7027–7035

    Article  PubMed  CAS  Google Scholar 

  5. Mapari SAS, Meyer AS, Thrane U, Frisvad JC (2009) Identification of potentially safe promising fungal cell factories for the production of polyketide natural food colorants using chemotaxonomic rationale. Microb Cell Fact 24:1–15

    Google Scholar 

  6. Liu Q, Hu X, Wang Y, Yang P, Xia H, Yu J, Liu H (2005) Extraction of penicillin G by aqueous two-phase system of [Bmim]BF4/NaH2PO4. Chin Sci Bull 50:1582–1585

    Article  CAS  Google Scholar 

  7. Hailei W, Zhifang R, Ping L, Yanchang G, Guosheng L, Jianming Y (2011) Improvement of the production of a red pigment in Penicillium sp. HSD07B synthesized during co-culture with Candida tropicalis. Bioresour Technol 102:6082–6087

    Article  PubMed  Google Scholar 

  8. Hailei W, Ping L, Yufeng L, Zhifang R, Gang W (2012) Overproduction of potential red pigment by a specific self-immobilization biomembrane-surface liquid culture of Penicillium novae-zeelandiae. Bioprocess Biosyst Eng 35:1407–1416

    Article  PubMed  Google Scholar 

  9. Mapari SAS, Hansen ME, Meyer AS, Thrane U (2008) Computerized screening for novel producers of Monascus-like food pigments in Penicillium species. J Agric Food Chem 56:9981–9989

    Article  PubMed  CAS  Google Scholar 

  10. Méndez A, Pérez C, Montañéz JC, Martínez G, Aguilar CN (2011) Red pigment production by Penicillium purpurogenum GH2 is influenced by pH and temperature. J Zhejiang Univ-SCI B (Biomed & Biotechnol) 12:961–968

    Article  Google Scholar 

  11. Teixeira MFS, Martins MS, da Silva J, Kirsch LS, Fernandes OCC, Carneiro ALB, de Conti R, Durán N (2012) Amazonian biodiversity: pigments from Aspergillus and Penicillium–characterizations, antibacterial activities and their toxicities. Curr Trends Biotechnol Pharm 6:300–311

    CAS  Google Scholar 

  12. Marie-Odile L, Sandrine M (2010) Isolation and structural characterization of two new metabolites from Monascus. J Agric Food Chem 58:1800–1803

    Article  Google Scholar 

  13. Velmurugan P, Kamala-Kannan S, Balachandar V, Lakshmanaperumalsamy P, Chae J-C, Oh B-T (2010) Natural pigment extraction from five filamentous fungi for industrial applications and dyeing leather. Carbohydr Polym 79:262–268

    Article  CAS  Google Scholar 

  14. Xijun L, Changlu W, Kunliang G (2007) Identification of new red pigments produced by Monascus ruber. Dyes Pigments 73:121–125

    Article  Google Scholar 

  15. Dermiki M, Gordon MH, Jauregi P (2009) Recovery of astaxanthin using colloidal gas aphrons (CGA): a mechanistic study. Sep Purif Technol 65:54–64

    Article  CAS  Google Scholar 

  16. Rosa PAJ, Ferreira IF, Azevedo AM, Aires-Barros MR (2010) Aqueous two-phase systems: a viable platform in the manufacturing of biopharmaceuticals. J Chromatogr A 1217:2296–2305

    Article  PubMed  CAS  Google Scholar 

  17. Santos VC, Hasmann FA, Converti A, Pessoa A Jr (2011) Liquid-liquid extraction by mixed micellar systems: a new approach for clavulanic acid recovery from fermented broth. Biochem Eng J 56:75–83

    Article  CAS  Google Scholar 

  18. Mazzola PG, Lopes AM, Hasmann FA, Jozala AF, Penna TCV, Magalhaes PO, Rangel-Yagui CO, Pessoa A (2008) Liquid-liquid extraction of biomolecules: an overview and update of the main techniques. J Chem Technol Biot 83:143–157

    Article  CAS  Google Scholar 

  19. Hatti-Kaul R (2000) Aqueous two-phase systems: methods and protocols. Methods in biotechnology. Humana, Totowa, New Jersey, USA

  20. Johansson G (1998) Affinity partitioning of proteins using aqueous two-phase systems. In: Janson J-C, Rydén L (eds) Protein purification: principles, high-resolution methods, and applications, 2nd edn. Wiley, New York

    Google Scholar 

  21. Pereira JFB, Santos VC, Johansson H-O, Teixeira JAC, Pessoa A Jr (2012) A stable liquid–liquid extraction system for clavulanic acid using polymer-based aqueous two-phase systems. Sep Pur Technol 98:441–450

    Article  CAS  Google Scholar 

  22. Esmanhoto E, Kilikian BV (2004) ATPS applied to extraction of small molecules—polycetides—and simultaneous clarification of culture media with filamentous microorganisms. J Chromatogr B 807:139–143

    Article  CAS  Google Scholar 

  23. Mageste AB, Lemos LR, Ferreira GMD (2009) Aqueous two-phase systems: an efficient, environmentally safe and economically viable method for purification of natural dye carmine. J Chromatogr A 1216:7623–7629

    Article  PubMed  CAS  Google Scholar 

  24. Ventura SPM, de Barros RLF, de Pinho Barbosa JM, Soares CMF, Lima AS, Coutinho JAP (2012) Production and purification of an extracellular lipolytic enzyme using ionic liquid-based aqueous two-phase systems. Green Chem 14:734–740

    Article  CAS  Google Scholar 

  25. Ventura SPM, Sousa SG, Freire MG, Serafim LS, Lima ÁS, Coutinho JAP (2011) Design of ionic liquids for lipase purification. J Chromatogr B 879:2679–2687

    Article  CAS  Google Scholar 

  26. Navapara RD, Avhad DN, Rathod VK (2011) Application of response surface methodology for optimization of bromelain extraction in aqueous two-phase system. Sep Sci Technol 46:1838–1847

    Article  CAS  Google Scholar 

  27. Huddleston JG, Willauer HD, Swatloski RP, Visser AE, Rogers RD (1998) Room temperature ionic liquids as novel media for ‘clean’ liquid–liquid extraction. Chem Commun 16:1765–1766

    Article  Google Scholar 

  28. Pei Y, Jianji W, Wu K, Xuan X, Lu X (2009) Ionic liquid-based aqueous two-phase extraction of selected proteins. Sep Pur Technol 64:288–295

    Article  CAS  Google Scholar 

  29. Cláudio AFM, Freire MG, Freire CSR, Silvestre AJD, Coutinho JAP (2010) Extraction of vanillin using ionic-liquid-based aqueous two-phase systems. Sep Pur Technol 75:39–47

    Article  Google Scholar 

  30. Cláudio AFM, Ferreira AM, Freire CSR, Silvestre AJD, Freire MG, Coutinho JAP (2012) Optimization of the gallic acid extraction using ionic-liquid-based aqueous two-phase systems. Sep Pur Technol 97:142–149

    Article  Google Scholar 

  31. Akama Y, Ito M, Tanaka S (2000) Selective separation of cadmium from cobalt, copper, iron (III) and zinc by water-based two-phase system of tetrabutylammonium bromide. Talanta 53:645–650

    Article  PubMed  CAS  Google Scholar 

  32. Freire MG, Neves CMSS, Marrucho IM, Canongia Lopes JN, Rebelo LPN, Coutinho JAP (2010) High-performance extraction of alkaloids using aqueous two-phase systems with ionic liquids. Green Chem 12:1715–1718

    Article  CAS  Google Scholar 

  33. Louros CLS, Cláudio AFM, Neves CMSS, Freire MG, Marrucho IM, Pauly J, Coutinho JAP (2010) Extraction of biomolecules using phosphonium-based ionic liquids + K3PO4 aqueous biphasic systems. Int J Mol Sci 11:1777–1791

    Article  PubMed  CAS  Google Scholar 

  34. Soto A, Arce A, Khoshkbarchi MK (2005) Partitioning of antibiotics in a two-liquid phase system formed by water and a room temperature ionic liquid. Sep Pur Technol 44:242–246

    Article  CAS  Google Scholar 

  35. Ma CH, Wang L, Yan YS, Che GB, Yin YS, Wang RZ, Li DY (2009) Extraction of tetracycline via ionic liquid two-phase system. Chem Res Chin U 25:832–835

    CAS  Google Scholar 

  36. Selber K, Collen A, Hyytia T, Penttila M, Tjerneld F, Kula MR (2001) Parameters influencing protein extraction for whole broths in detergent based aqueous two-phase systems. Bioseparation 10:229–236

    Article  PubMed  CAS  Google Scholar 

  37. Freire MG, Pereira JFB, Francisco M, Rodríguez H, Rebelo LPN, Rogers RD, Coutinho JAP (2012) Insight into the interactions that control the phase behaviour of new aqueous biphasic systems composed of polyethylene glycol polymers and ionic liquids. Chem Eur J 18:1831–1839

    Article  PubMed  CAS  Google Scholar 

  38. Freire MG, Cláudio AFM, Araújo JMM, Coutinho JAP, Marrucho IM, Lopes JNC, Rebelo LPN (2012) Aqueous biphasic systems: a boost brought about by using ionic liquids. Chem Soc Rev 41:4966–4995

    Article  PubMed  CAS  Google Scholar 

  39. Pitt J (1985) A laboratory guide to common penicillium species. CSIRO, Australia

    Google Scholar 

  40. Silva FA, Sintra T, Ventura SPM, Coutinho JAP (2013) Recovery of drugs from pharmaceutical wastes. Chem Eng J (Unpublished results)

  41. Sintra T, Cruz R, Ventura SPM, Coutinho JAP (2013) Phase diagrams of diverse ionic liquids and salts as a platform for distinct extraction processes. J Chem Therm (Unpublished results)

  42. Mester P, Wagner M, Rossmanith P (2010) Biased spectroscopic protein quantification in the presence of ionic liquids. Anal Bioanal Chem 397:1763–1766

    Article  PubMed  CAS  Google Scholar 

  43. Borges ME, Tejera RL, Dias L, Esparza P, Ibáñez E (2012) Natural dyes extraction from cochineal (Dactylopius coccusi). New extraction methods. Food Chem 132:1855–1860

    Article  CAS  Google Scholar 

  44. Santos-Ebinuma VC, Roberto IC, Teixeira MFS, Pessoa A Jr (2012) Improving of red colorants production by a new Penicillium purpurogenum strain in submerged culture and the effect of different parameters in their stability. Biotechnol Prog (Unpublished results)

  45. Chen MH, Johns MR (1993) Effect of pH and nitrogen source on pigment production by Monascus purpureus. Appl Microbiol Biotechnol 40:132–138

    Article  CAS  Google Scholar 

  46. Santos-Ebinuma VC, Teixeira MFS, Pessoa A Jr, Jauregi P (2012) Separation of red colorants from submerged culture of Penicillium purpurogenum DPUA 1275 using Colloidal Gas Aphrons. Sep Pur Technol (Unpublished results)

  47. Santos-Ebinuma VC, Lopes AM, Teixeira MFS, Pessoa A Jr (2012) Extraction of red colorants produced by submerged culture of Penicillium purpurogenum DPUA 1275 using aqueous two-phase polymer systems. Sep Pur Technol (Unpublished results)

Download references

Acknowledgments

This work was financed by national funding from Fundação para a Ciência e a Tecnologia (FCT), through the projects PTDC/QUI-QUI/121520/2010 and Pest-C/CTM/LA0011/2011. The authors also acknowledge FCT for the doctoral and post-doctoral grant SFRH/BD/60228/2009 and SFRH/BPD/79263/2011 awarded to J. F. B. Pereira and S. P. M. Ventura, respectively. The authors are also grateful for the financial support (process reference 2012/09479-4) from FAPESP (São Paulo Research Foundation, Brazil). V. C. Santos-Ebinuma and A. Pessoa thank FAPESP (São Paulo Research Foundation, Brazil), CNPq (National Council for Scientific and Technological Development—Brazil), and CAPES (Coordination of Superior Level Staff Improvement, Brazil) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sónia P. M. Ventura.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 824 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ventura, S.P.M., Santos-Ebinuma, V.C., Pereira, J.F.B. et al. Isolation of natural red colorants from fermented broth using ionic liquid-based aqueous two-phase systems. J Ind Microbiol Biotechnol 40, 507–516 (2013). https://doi.org/10.1007/s10295-013-1237-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-013-1237-y

Keywords

Navigation