Skip to main content
Log in

Characteristics of inter-frequency clock bias for Block IIF satellites and its effect on triple-frequency GPS precise point positioning

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

The latest generation of GPS satellites, termed Block IIF, provides a new L5 signal. Multi-frequency signals open new prospects for precise positioning and fast ambiguity resolution and have become the trend in Global Navigation Satellite System (GNSS) development. However, a new type of inter-frequency clock bias (IFCB), i.e., the difference between the current clock products computed with L1/L2 and the satellite clocks computed with L1/L5, was noticed. Consequently, the L1/L2 clock products cannot be used for L1/L5 precise point positioning (PPP). In order to solve this issue, the IFCB should be estimated with a high accuracy. Datasets collected at 129 globally distributed Multi-GNSS Experiment (MGEX) stations from 2015 are employed to investigate the IFCB. The results indicate that the IFCB is satellite dependent and varies with the relative sun–spacecraft–earth geometry. Other factors, however, may also contribute to the IFCB variations according to the harmonic analysis of the single-day IFCB time series. In addition, the results show that the IFCB exhibits periodic signal with a notable period of 43,080 s and the peak-to-peak amplitude is 0.023–0.269 m. After considering a time lag of 240 s, the average cross-correlation coefficient between the IFCB series of two consecutive days is 0.943, and the prediction accuracy of IFCB is 0.006 m. A triple-frequency PPP model that takes the IFCB into account is proposed. When using 3-h datasets, the positioning accuracy of triple-frequency PPP can be improved by 19, 13 and 21 % compared with the L1/L2-based PPP in the east, north and up directions, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Boehm J, Niell A, Tregoning P, Schuh H (2006) Global Mapping Function (GMF): a new empirical mapping function based on numerical weather model data. Geophys Res Lett 33(7):L07304. doi:10.1029/2005GL025546

    Article  Google Scholar 

  • Bona P (2000) Precision, cross correlation, and time correlation of GPS phase and code observations. GPS Solut 4(2):3–13. doi:10.1007/PL00012839

    Article  Google Scholar 

  • Cai C, Gao Y, Pan L, Zhu J (2015a) Precise point positioning with quad-constellations: GPS, BeiDou, GLONASS and Galileo. Adv Space Res 56(1):133–143. doi:10.1016/j.asr.2015.04.001

    Article  Google Scholar 

  • Cai C, He C, Santerre R, Pan L, Cui X, Zhu J (2015b) A comparative analysis of measurement noise and multipath for four constellations: GPS, BeiDou, GLONASS and Galileo. Surv Rev. doi:10.1179/1752270615Y.0000000032

    Google Scholar 

  • Davis JL, Herring TA, Shapiro II, Rogers AEE, Elgered G (1985) Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length. Radio Sci 20(6):1593–1607. doi:10.1029/RS020i006p01593

    Article  Google Scholar 

  • Elsobeiey M (2015) Precise point positioning using triple-frequency GPS measurements. J Navig 68(3):480–492. doi:10.1017/S0373463314000824

    Article  Google Scholar 

  • Gerdan GP (1995) A comparison of four methods of weighting double difference pseudorange measurements. Aust Surv 40(4):60–66. doi:10.1080/00050334.1995.10558564

    Article  Google Scholar 

  • Hauschild A, Steigenberger P, Rodriguez-Solano C (2012) Signal, orbit and attitude analysis of Japan’s first QZSS satellite Michibiki. GPS Solut 16(1):127–133. doi:10.1007/s10291-011-0245-5

    Article  Google Scholar 

  • Jenkins WK (1999) Fourier series, fourier transforms, and the DFT. In: Madisetti VK, Williams DB (eds) Digital signal processing handbook. CRC Press, Boca Raton, pp 3–24

    Google Scholar 

  • Kouba J, Héroux P (2001) Precise point positioning using IGS orbit and clock products. GPS Solut 5(2):12–28. doi:10.1007/PL00012883

    Article  Google Scholar 

  • Li H, Zhou X, Wu B, Wang J (2012) Estimation of the inter-frequency clock bias for the satellites of PRN25 and PRN01. Sci China Phys Mech Astron 55(11):2186–2193. doi:10.1007/s11433-012-4897-0

    Article  Google Scholar 

  • Li H, Chen Y, Wu B, Hu X, He F, Tang G, Gong X, Chen J (2013a) Modeling and initial assessment of the inter-frequency clock bias for COMPASS GEO satellites. Adv Space Res 51(12):2277–2284. doi:10.1016/j.asr.2013.02.012

    Article  Google Scholar 

  • Li H, Zhou X, Wu B (2013b) Fast estimation and analysis of the inter-frequency clock bias for Block IIF satellites. GPS Solut 17(3):347–355. doi:10.1007/s10291-012-0283-7

    Article  Google Scholar 

  • Li H, Li B, Xiao G, Wang J, Xu T (2015a) Improved method for estimating the inter-frequency satellite clock bias of triple-frequency GPS. GPS Solut. doi:10.1007/s10291-015-0486-9

    Google Scholar 

  • Li X, Dick G, Lu C, Ge M, Nilsson T, Ning T, Wickert J, Schuh H (2015b) Multi-GNSS meteorology: real-time retrieving of atmospheric water vapor from BeiDou, Galileo, GLONASS, and GPS observations. IEEE Trans Geosci Remote Sens 53(12):6385–6393. doi:10.1109/TGRS.2015.2438395

    Article  Google Scholar 

  • Li X, Ge M, Dai X, Ren X, Fritsche M, Wickert J, Schuh H (2015c) Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. J Geod 89(6):607–635. doi:10.1007/s00190-015-0802-8

    Article  Google Scholar 

  • Montenbruck O, Hauschild A, Steigenberger P, Langley RB (2010) Three’s the challenge: a close look at GPS SVN62 triple-frequency signal combinations finds carrier-phase variations on the new L5. GPS World 21(8):8–19

    Google Scholar 

  • Montenbruck O, Hugentobler U, Dach R, Steigenberger P, Hauschild A (2012) Apparent clock variations of the Block IIF-1 (SVN62) GPS satellite. GPS Solut 16(3):303–313. doi:10.1007/s10291-011-0232-x

    Article  Google Scholar 

  • Montenbruck O, Hauschild A, Steigenberger P, Hugentobler U, Teunissen P, Nakamura S (2013) Initial assessment of the COMPASS/BeiDou-2 regional navigation satellite system. GPS Solut 17(2):211–222. doi:10.1007/s10291-012-0272-x

    Article  Google Scholar 

  • Pan L, Cai C, Santerre R, Zhu J (2014) Combined GPS/GLONASS precise point positioning with fixed GPS ambiguities. Sensors 14(9):17530–17547. doi:10.3390/s140917530

    Article  Google Scholar 

  • Pan L, Cai C, Santerre R, Zhang X (2016) Performance evaluation of single-frequency point positioning with GPS, GLONASS, BeiDou and Galileo. Surv Rev. doi:10.1080/00396265.2016.1151628

    Google Scholar 

  • Spits J, Warnant R (2008) Total electron content monitoring using triple frequency GNSS data: a three-step approach. J Atmos Sol Terr Phys 70(15):1885–1893. doi:10.1016/j.jastp.2008.03.007

    Article  Google Scholar 

  • Steigenberger P, Hauschild A, Montenbruck O, Rodriguez-Solano C, Hugentobler U (2013) Orbit and clock determination of QZS-1 based on the CONGO network. Navig J Inst Navig 60(1):31–40. doi:10.1002/navi.27

    Article  Google Scholar 

  • Teunissen PJG, Joosten P, Tiberius C (2002) A comparison of TCAR, CIR and LAMBDA GNSS ambiguity resolution. In: Proceedings of ION-GPS-2002, Institute of Navigation, Portland, OR, USA, 24–27 September 2002, pp 2799–2808

  • Tsai YH, Yang WC, Chang FR, Ma CL (2004) Using multi-frequency for GPS positioning and receiver autonomous integrity monitoring. In: Proceedings of 2004 IEEE International Conference on Control Applications, Taipei, Taiwan, 2–4 September 2004, pp 205–210

  • Zhao Q, Wang G, Liu Z, Hu Z, Dai Z, Liu J (2016) Analysis of BeiDou satellite measurements with code multipath and geometry-free ionospheric-free combinations. Sensors 16(1):123. doi:10.3390/s16010123

    Article  Google Scholar 

Download references

Acknowledgments

The contribution of data from IGS is appreciated. This study was supported by National Natural Science Foundation of China (Grant No. 41474025) and Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan University (Grant No. 15-02-06).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaohong Zhang or Xingxing Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, L., Zhang, X., Li, X. et al. Characteristics of inter-frequency clock bias for Block IIF satellites and its effect on triple-frequency GPS precise point positioning. GPS Solut 21, 811–822 (2017). https://doi.org/10.1007/s10291-016-0571-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-016-0571-8

Keywords

Navigation