Skip to main content
Log in

Vector ionosphere modeling by vector spherical Slepian base functions

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

Ionosphere and its spatial and temporal gradients play an important role in positioning and navigation using global navigation satellite systems (GNSS). This study intends to propose a new method for modeling both the spatial gradients and also the total electron content (TEC) in radial direction (vertical TEC or VTEC). The spatio-spectral concentration is applied to optimize vector spherical harmonic functions. The Slepian theory is used for this purpose. Dual-frequency GPS measurements are used to derive the required input data utilizing six IGS (International GNSS Service) stations, located in the northern polar region. Two additional IGS stations are used to analyze the accuracy of the developed model. To employ the method, GPS measurements over three periods, i.e., over high and low solar activity and perturbed ionospheric conditions, have been used. Four vector spherical Slepian models with the maximal degrees of K = 10, 15, 20 and 25 are taken into account. The models are estimated at each epoch in this research. Based on the results, K = 15 is the optimum degree for the vector spherical Slepian (VSS) model. On average, at the degree of 15, the RMSE is about 0.1 TECU and less than 0.05 TECU/degree for the radial and tangential components, respectively. Repeatability of the baseline (precision) components on a long baseline is used as a measure for validation of VSS model. On average, the repeatability improves by 25 and 35 % in the vertical and horizontal components for gradients of ionosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdullah M, Strangeway HJ, Walsh DMA (2007) Effects of ionospheric horizontal gradients on differential GPS. Acta Geophys 55(4):509–523. doi:10.2478/s11600-007-0029-z

    Article  Google Scholar 

  • Astafyeva E, Yasyukevich Y, Maksikov A, Zhivetiev I (2014) Geomagnetic storms, super-storms, and their impacts on GPS-based navigation systems. Space Weather 12(7):508–525

    Article  Google Scholar 

  • Bilitza D, Reinisch B (2007) International reference ionosphere 2007: improvements and new parameters. Adv Space Res 42:599–609

    Article  Google Scholar 

  • Bilitza D, McKinnell L, Reinisch B, Fuller-Rowell T (2011) The international reference ionosphere today and in the future. J Geod 85:909–920

    Article  Google Scholar 

  • Bounsanto MJ (1999) Ionospheric storms—a review. Space Sci Rev 88:563–601

    Article  Google Scholar 

  • Chandra KR, Srinivas VS, Sarma AD (2009) Investigation of ionospheric gradients for GAGAN application. Earth Planets Space 61(5):633–635

    Article  Google Scholar 

  • Chelton D, Ries J, Haines B, Fu L, Callahan P (2001) Satellite altimetry and Earth sciences: a handbook of techniques and applications. Academic Press, London

    Google Scholar 

  • Coster AJ, Foster JC, Erickson PJ, Rich FJ (2001) Regional GPS mapping of storm enhanced density during the 15–16 July 2000 geomagnetic storm. In: Proceedings of ION GPS 2001, Institute of Navigation Salt Lake City UT USA, September, pp 2531–2539

  • Dach R, Hugentobler U, Fridez P, Meindl M (2007) Bernese GPS Software version 5.0. Astronomical Institute, University of Berne, Switzerland

  • Datta-Barua S, Walter T, Pullen S, Luo M, Blanch J, Enge P (2002) Using WAAS ionospheric data to estimate LAAS short baseline gradients. In: Proceedings of ION 2002 national technical meeting, pp 28–30

  • Datta-Barua S, Lee J, Pullen S, LuoM EneA, Qiu D, ZhangG EngeP (2010) Ionosphere threat parameterization for local area global positioning system-based aircraft landing system. J Aircr 47(4):1141–1151

    Article  Google Scholar 

  • Ene A, Qiu D, Luo M, Pullen S, Enge P (2005) A comprehensive ionosphere storm data analysis method to support LAAS threat model development. In: Proceedings of ION NTM 2005. Institute of Navigation, San Diego CA, Jan 24–26, pp 110–130

  • Erickson WC, Perley RA, FlattersC KassimNE (2001) Ionospheric corrections for VLA observations usingLocal GPS data. Astron Astrophys A&A 366:1071–1080. doi:10.1051/0004-6361:20000359

    Article  Google Scholar 

  • Eshagh M (2009) Spatially restricted integrals in gradiometric boundary value problems. Artif Sat 44(4):131–148. doi:10.2478/v10018-009-0025-4

    Google Scholar 

  • Etemadfard H, Hossainali MM (2015) Application of Slepian theory for improving the accuracy of SH-based global ionosphere models in the Arctic region. J Geophys Res Space Phys. doi:10.1002/2015JA021811

    Google Scholar 

  • Etemadfard H, Hossainali MM (2016) Spherical Slepian as a new method for ionospheric modeling in arctic region. J Atmos Solar Terr Phys 140:10–15. doi:10.1016/j.jastp.2016.01.003

    Article  Google Scholar 

  • Foster JC (1998) Storm time plasma transport at middle and high-latitudes. J Geophys Res 98:1675–1689

    Article  Google Scholar 

  • Goad CC (1990) Optimal filtering of pseudoranges and phases from single-frequency GPS receivers. Navigation 37(3):249–262

    Article  Google Scholar 

  • Hernández-Pajares M, Juan JM, Sanz J (2006) Medium-scale traveling ionospheric disturbances affecting GPS measurements: spatial and temporal analysis. J Geophys Res Space Phys 111(A7):1–13

    Article  Google Scholar 

  • Ho YH, Zain AFM, Abdullah M, Ramli AG, Hassan WSW (2002) Equatorial TEC variations during the geomagnetic storm of July 15–17, 2000. 27th General Assembly of URSI, Maastricht, the Netherlands, pp1–4

  • Hobiger T (2005) VLBI as tool to probe the ionosphere. Ph.D. thesis, Institute of Geodesy and Geophysics, Vienna University of Technology, Austria

  • Hochegger G, Nava B, Radicella S, Leitinger R (2000) A family of ionospheric models for different uses. Phys Chem Earth Part C Sol Terr Planet Sci 25:307–310

    Google Scholar 

  • Komjathy A (1997) Global ionospheric total electron content mapping using the global positioning system. Ph.D dissertation, Department of Geodesy and Geomatics Engineering, Technical Report No. 188. University of New Brunswick, Canada

  • Landau HJ, Pollak HO (1961) Prolate spheroidal wave functions, fourier analysis and uncertainty—II. Bell Syst Tech J 40(1):65–84

    Article  Google Scholar 

  • Landau HJ, Pollak HO (1962) Prolate spheroidal wave functions, fourier analysis and uncertainty—III: the dimension of the space of essentially time- and band-limited signals. Bell Syst Tech J 41(4):1295–1336

    Article  Google Scholar 

  • Lee J, Pullen S, Datta-Barua S, Enge P (2007) Assessment of ionosphere spatial decorrelation for global positioning system-based aircraft landing systems. J Aircr 44(5):1662–1669

    Article  Google Scholar 

  • Liu J, Kuga Y, Ishimaru A, Pi X, Freeman A (2003) Ionospheric effects on SAR imaging: a numerical study. IEEE Trans Geosci Remote Sens 41(5):939–947

    Article  Google Scholar 

  • Meyer F, Bamler R, Jakowski N, Fritz T (2005) The potential of broadband L-band SAR systems for small scale ionospheric TEC mapping. In Lacoste H (ed) Proceedings of fringe 2005 workshop, Frascati, Italy, ESA Special Publications, SP- 610, (ESA Publications Division, Nordwijk, 2006)

  • Mitra PP, Maniar H (2005) Local basis expansions for MEG source localization. Int J Bioelectromagn 7(2):30–33

    Google Scholar 

  • Mitra PP, Maniar H (2006) Concentration maximization and local basis expansions (LBEX) for linear inverse problems. IEEE Trans Biomed Eng 53(9):1775–1782

    Article  Google Scholar 

  • Plattner A, Simons FJ (2014) Spatiospectral concentration of vector fields on a sphere. Appl Comput Harmonic Anal 36(1):1–22

    Article  Google Scholar 

  • Radicella S, Leitinger R (2001) The evolution of the DGR approach to model electron density profiles. Adv Space Res 27:35–40

    Article  Google Scholar 

  • Schaer S (1999) Mapping and predicting the Earth’s ionosphere using the global positioning system. Ph.D. thesis, Bern University, Switzerland

  • Schmidt M (2007) Wavelet modeling in support of IRI. Adv Space Res 39:932–940

    Article  Google Scholar 

  • Schunk R, Scherliess L, Sojka J, Thompson D (2004) Global assimilation of ionospheric measurements (GAIM). Radio Sci 39(1):11

    Article  Google Scholar 

  • Sharifi MA, Farzaneh S (2014) The spatio-spectral localization approach to modeling VTEC over the western part of the USA using GPS observations. Adv Space Res 54(6):908–916

    Article  Google Scholar 

  • Simons FJ (2010) Slepian functions and their use in signal estimation and spectral analysis. In: Freeden W, Nashed MZ, Sonar T (eds) Handbook of geomathematics. Springer, Heidelberg, ch. 30, pp 891–923. doi: 10.1007/978-3-642-01546-5_30

  • Simons FJ, Dahlen FA, Wieczorek MA (2006) Spatiospectral concentration on a sphere. SIAM Rev 48(3):504–536. doi:10.1137/S0036144504445765

    Article  Google Scholar 

  • Simons FJ, Hawthorne JC, Beggan CD (2009) Efficient analysis and representation of geophysical processes using localized spherical basis functions. In: Goyal VK, Papadakis M, Van de Ville D (eds) Wavelets XIII, vol 7446, pp 74460G. doi: 10.1117/12.825730, SPIE

  • Slepian D (1964) Prolate spheroidal wave functions, Fourier analysis and uncertainty—IV: extensions to many dimensions; generalized prolate spheroidal functions. Bell Syst Tech J 43(6):3009–3057

    Article  Google Scholar 

  • Slepian D (1983) Some comments on Fourier analysis, uncertainty and modeling. SIAM Rev 25(3):379–393

    Article  Google Scholar 

  • Slepian D, Pollak HO (1961) Prolate spheroidal wave functions, fourier analysis and uncertainty—I. Bell Syst Tech J 40(1):43–63

    Article  Google Scholar 

  • Slepian D, Sonnenblick E (1965) Eigenvalues associated with prolate spheroidal wave functions of zero order. Bell Syst Tech J 44:1745–1759

    Article  Google Scholar 

  • Stankov SM, Jakowski N (2006) Ionospheric effects on GNSS reference network integrity. J Atmos Solar Terr Phys 69(4–5):485–499

    Google Scholar 

  • Strangeways HJ (2000) Effect of horizontal gradients on ionospherically reflected or transionospheric paths using a precise homing-in method. J Atmos Solar Terr Phys 62(15):1361–1376

    Article  Google Scholar 

  • Takasu T (2011) RTKLIB: an open source program package for GNSS positioning (11 June 2011). http://www.rtklib.com/prog/rtklib_2.4.2.zip

  • Vemuri SS, Achanta DS, Reddy KD (2014) Ionospheric time delay modelling using anisotropic IDW. IEEE 978-1-4799-3540

  • Vo HB, Foster JC (2001) A quantitative study of ionospheric density gradients at midlatitudes. J Geophys Res Space Phys (1978–2012) 106.A10: 21555–21563

  • Wanninger L (1993) Effects of the equatorial ionosphere on GPS. GPS World, July, pp 48–54

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Etemadfard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Etemadfard, H., Hossainali, M.M. Vector ionosphere modeling by vector spherical Slepian base functions. GPS Solut 21, 675–684 (2017). https://doi.org/10.1007/s10291-016-0559-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-016-0559-4

Keywords

Navigation