Skip to main content
Log in

A new practical approach to GNSS high-dimensional ambiguity decorrelation

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

Based on both the lower and the upper triangular Cholesky decomposition algorithms, the (inverse) lower triangular Cholesky integer transformation and the (inverse) upper triangular Cholesky integer transformation are defined, and the (inverse) paired Cholesky integer transformation is proposed. Then, for the case of high-correlation ambiguity, a multi-time (inverse) paired Cholesky integer transformation is given. In addition, a simple and practical criterion is presented to solve the uniqueness problem of the integer transformation. It is verified by an example that (1) the (inverse) paired Cholesky integer transformation is very convenient and very efficient in practical computation; (2) the (inverse) paired Cholesky integer transformation is better than both the (inverse) lower triangular Cholesky integer transformation and the (inverse) upper triangular Cholesky integer transformation; and that (3) the inverse paired Cholesky integer transformation outperforms the paired Cholesky integer transformation slightly in the most cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cai J, Grafarend EW, Hu C (2009) The total optimal search criterion in solving the mixed integer linear model with GNSS carrier phase observations. GPS Solut 13(3):221–230

    Article  Google Scholar 

  • Jonge PJ de, Tiberius CCJM (1996) The Lambda method for integer ambiguity estimation: implementation aspects. In: Delft Geodetic Computing Center LGR-series, no 12. pp 1–49

  • Golub GH, Van Loan CF (1993) Matrix computation, 2nd edn edn. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Grafarend E (2000) Mixed integer-real valued adjustment (IRA) problems. GPS Solut 4:31–45

    Article  Google Scholar 

  • Hassibi A, Boyd S (1998) Integer parameter estimation in linear models with applications to GPS. IEEE Trans Signal Proc 46:2938–2952

    Article  Google Scholar 

  • Hofmann-Wellenhof B, Lichtenegger H, Wasle E (2008) GNSS global navigation satellite systems, GPS, GLONASS, Galileo & more. Springer, Wien

    Google Scholar 

  • Leick A (2004) GPS satellite surveying, 3rd edn edn. Wiley, New York

    Google Scholar 

  • Li Z, Gao Y (1998) A method for the construction of high dimensional transformation matrices in LAMBDA. Geomatica 52:433–439

    Google Scholar 

  • Liu LT, Hsu HT, Zhu YZ, Ou JK (1999) A new approach to GPS ambiguity decorrelation. J Geod 73:478–490

    Article  Google Scholar 

  • Lou L, Grafarend E (2003) GPS integer ambiguity resolution by various decorrelation methods. Zeitschrift für Vermessungswesen 3:203–210

    Google Scholar 

  • Rizos C, Han S (1995) A new method for constraining multi-satellite ambiguity combinations for improved ambiguity resolution. In: Proc ION GPS-95, Palm springs, 12–15 September, pp 1145–1153

  • Strang G, Borre K (1997) Linear algebra, geodesy, and GPS. Cambridge Press, Wellesley

    Google Scholar 

  • Teunissen PJG (1993) Least-squares estimation of the integer GPS ambiguities. Invited lecture, sect, theory and methodology. In: IAG general meeting, Beijing

  • Teunissen PJG (1994). A new method for fast carrier phase ambiguity estimation. In: Proceedings of PLANS’94, Las Vegas, NV, April 11–15, pp 562–573

  • Teunissen PJG (1995a) The invertible GPS ambiguity transformations. Manuscr Geod 20(6):489–497

    Google Scholar 

  • Teunissen PJG (1995b) The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. J Geod 70:65–82

    Article  Google Scholar 

  • Teunissen PJG (1999) An optimality property of the integer least-squares estimator. J Geod 73:587–593

    Article  Google Scholar 

  • Teunissen PJG (2001) The probability distribution of the ambiguity bootstrapped GNSS baseline. J Geod 75:267–275

    Article  Google Scholar 

  • Teunissen PJG, Kleusberg A (eds) (1998) GPS for geodesy, 2nd edn edn. Springer, Berlin, pp 262–333

    Google Scholar 

  • Teunissen PJG, De Jonge PJ, Tiberius CC (1997) The least-squares ambiguity decorrelation adjustment: its performance on short GPS baselines and short observation spans. J Geod 71:589–602

    Article  Google Scholar 

  • Xu P (2001) Random simulation and GPS decorrelation. J Geod 75:408–423

    Article  Google Scholar 

  • Zhou Y, Liu J (2003) Another form for LAMBDA method. Geo Spat Inf Sci (Quarterly) 6(3):66–70

    Article  Google Scholar 

  • Zhou Y, Liu J (2006) Return bootstrapping approach and its reliability. Surv Rev 38(299):368–378

    Google Scholar 

  • Zhou Y, Liu J, Liu J (2005) Return-calculating LAMBDA approach and its search space. Actc Geodaetica et Cartographica Sinica 34(4):300–304

    Google Scholar 

Download references

Acknowledgments

This study is supported by Key Laboratory of Advanced Engineering Surveying of SBSM (ES-SBSM-(07)-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangmei Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Y. A new practical approach to GNSS high-dimensional ambiguity decorrelation. GPS Solut 15, 325–331 (2011). https://doi.org/10.1007/s10291-010-0192-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-010-0192-6

Keywords

Navigation