Skip to main content
Log in

The function of the autonomic nervous system during spaceflight

  • Review Article
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract

Introduction

Despite decades of study, a clear understanding of autonomic nervous system activity in space remains elusive. Differential interpretation of fundamental data has driven divergent theories of sympathetic activation and vasorelaxation.

Methods

This paper will review the available in-flight autonomic and hemodynamic data in an effort to resolve these discrepancies. The NASA NEUROLAB mission, the most comprehensive assessment of autonomic function in microgravity to date, will be highlighted. The mechanisms responsible for altered autonomic activity during spaceflight, which include the effects of hypovolemia, cardiovascular deconditioning, and altered central processing, will be presented.

Results

The NEUROLAB experiments demonstrated increased sympathetic activity and impairment of vagal baroreflex function during short-duration spaceflight. Subsequent non-invasive studies of autonomic function during spaceflight have largely reinforced these findings, and provide strong evidence that sympathetic activity is increased in space relative to the supine position on Earth. Others have suggested that microgravity induces a state of relative vasorelaxation and increased vagal activity when compared to upright posture on Earth. These ostensibly disparate theories are not mutually exclusive, but rather directly reflect different pre-flight postural controls.

Conclusion

When these results are taken together, they demonstrate that the effectual autonomic challenge of spaceflight is small, and represents an orthostatic stress less than that of upright posture on Earth. In-flight countermeasures, including aerobic and resistance exercise, as well short-arm centrifugation, have been successfully deployed to counteract these mechanisms. Despite subtle changes in autonomic activity during spaceflight, underlying neurohumoral mechanisms of the autonomic nervous system remain intact and cardiovascular function remains stable during long-duration flight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arbeille Ph, Pottier J M, Patat F, Berson M, Roncin A, Le Toullec Ch, Migne P, Pourcelot L, Katovskaya A, Atkov O, Strogonova L, Fomina G, Kokova N, European Space Agency, European Symposium on Life Sciences Research in Space (3rd 1987 Graz Austria) (1987) Cardiovascular adaptation to zero-G during a long-term flight (237 days) on board the Salyut-VII Soviet Space Station. In: Proceedings of the third european symposium on life sciences research in space: 14–18 September 1987, Karl Franzens Universität Graz, Austria. ESA Publications Division, Noordwijk, The Netherlands

  2. Arbeille P, Fomina G, Roumy J, Alferova I, Tobal N, Herault S (2001) Adaptation of the left heart, cerebral and femoral arteries, and jugular and femoral veins during short- and long-term head-down tilt and spaceflights. Eur J Appl Physiol 86:157–168

    Article  CAS  PubMed  Google Scholar 

  3. Baevsky RM, Baranov VM, Funtova II, Diedrich A, Pashenko AV, Chernikova AG, Drescher J, Jordan J, Tank J (2007) Autonomic cardiovascular and respiratory control during prolonged spaceflights aboard the International Space Station. J Appl Physiol 103:156–161

    Article  PubMed  Google Scholar 

  4. Beckers F, Verheyden B, Liu J, Aubert AE (2009) Cardiovascular autonomic control after short-duration spaceflights. Acta Astronaut 65:804–812

    Article  Google Scholar 

  5. Buckey JC Jr, Lane LD, Levine BD, Watenpaugh DE, Wright SJ, Moore WE, Gaffney FA, Blomqvist CG (1996) Orthostatic intolerance after spaceflight. J Appl Physiol Bethesda Md 1985(81):7–18

    Google Scholar 

  6. Bungo MW, Charles JB, Johnson PC Jr (1985) Cardiovascular deconditioning during space flight and the use of saline as a countermeasure to orthostatic intolerance. Aviat Space Environ Med 56:985–990

    CAS  PubMed  Google Scholar 

  7. Carstensen E, Yudkin JS (1994) Platelet catecholamine concentrations after short-term stress in normal subjects. Clin Sci Lond Engl 1979(86):35–41

    Google Scholar 

  8. Christensen NJ, Heer M, Ivanova K, Norsk P (2005) Sympathetic nervous activity decreases during head-down bed rest but not during microgravity. J Appl Physiol Bethesda Md 1985(99):1552–1557

    Google Scholar 

  9. Clément G, Reschke M, Wood S (2005) Neurovestibular and sensorimotor studies in space and Earth benefits. Curr Pharm Biotechnol 6:267–283

    Article  PubMed  Google Scholar 

  10. Convertino VA, Doerr DF, Eckberg DL, Fritsch JM, Vernikos-Danellis J (1990) Head-down bed rest impairs vagal baroreflex responses and provokes orthostatic hypotension. J Appl Physiol Bethesda Md 1985(68):1458–1464

    Google Scholar 

  11. Convertino VA, Doerr DF, Guëll A, Marini JF (1992) Effects of acute exercise on attenuated vagal baroreflex function during bed rest. Aviat Space Environ Med 63:999–1003

    CAS  PubMed  Google Scholar 

  12. Cooke WH, Ames JE IV, Crossman AA, Cox JF, Kuusela TA, Tahvanainen KU, Moon LB, Drescher J, Baisch FJ, Mano T, Levine BD, Blomqvist CG, Eckberg DL (2000) Nine months in space: effects on human autonomic cardiovascular regulation. J Appl Physiol Bethesda Md 1985(89):1039–1045

    Google Scholar 

  13. Cooke WH, Cox JF, Diedrich AM, Taylor JA, Beightol LA, Ames JE 4th, Hoag JB, Seidel H, Eckberg DL (1998) Controlled breathing protocols probe human autonomic cardiovascular rhythms. Am J Physiol 274:H709–H718

    CAS  PubMed  Google Scholar 

  14. Cox JF, Tahvanainen KU, Kuusela TA, Levine BD, Cooke WH, Mano T, Iwase S, Saito M, Sugiyama Y, Ertl AC (2002) Influence of microgravity on astronauts’ sympathetic and vagal responses to Valsalva’s manoeuvre. J Physiol 538:309–320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Diedrich A, Paranjape SY, Robertson D (2007) Plasma and blood volume in space. Am J Med Sci 334:80–85

    Article  PubMed  Google Scholar 

  16. Eckberg DL, Fritsch JM (1992) Influence of ten-day head-down bedrest on human carotid baroreceptor-cardiac reflex function. Acta Physiol Scand Suppl 604:69–76

    CAS  PubMed  Google Scholar 

  17. Eckberg DL, Halliwill JR, Beightol LA, Brown TE, Taylor JA, Goble R (2010) Human vagal baroreflex mechanisms in space. J Physiol 588:1129–1138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Ertl AC, Diedrich A, Biaggioni I, Levine BD, Robertson RM, Cox JF, Zuckerman JH, Pawelczyk JA, Ray CA, Buckey JC (2002) Human muscle sympathetic nerve activity and plasma noradrenaline kinetics in space. J Physiol 538:321–329

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Esler M (1993) Clinical application of noradrenaline spillover methodology: delineation of regional human sympathetic nervous responses. Pharmacol Toxicol 73:243–253

    Article  CAS  PubMed  Google Scholar 

  20. Fitts RH, Trappe SW, Costill DL, Gallagher PM, Creer AC, Colloton PA, Peters JR, Romatowski JG, Bain JL, Riley DA (2010) Prolonged space flight-induced alterations in the structure and function of human skeletal muscle fibres. J Physiol 588:3567–3592

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Fritsch JM, Charles JB, Bennett BS, Jones MM, Eckberg DL (1992) Short-duration spaceflight impairs human carotid baroreceptor-cardiac reflex responses. J Appl Physiol Bethesda Md 1985(73):664–671

    Google Scholar 

  22. Fritsch-Yelle JM, Charles JB, Jones MM, Beightol LA, Eckberg DL (1994) Spaceflight alters autonomic regulation of arterial pressure in humans. J Appl Physiol Bethesda Md 1985(77):1776–1783

    Google Scholar 

  23. Fritsch-Yelle JM, Charles JB, Jones MM, Wood ML (1996) Microgravity decreases heart rate and arterial pressure in humans. J Appl Physiol Bethesda Md 1985(80):910–914

    Google Scholar 

  24. Fritsch-Yelle JM, Whitson PA, Bondar RL, Brown TE (1996) Subnormal norepinephrine release relates to presyncope in astronauts after spaceflight. J Appl Physiol Bethesda Md 1985(81):2134–2141

    Google Scholar 

  25. Fuller PM, Jones TA, Jones SM, Fuller CA (2002) Neurovestibular modulation of circadian and homeostatic regulation: vestibulohypothalamic connection? Proc Natl Acad Sci USA 99:15723–15728

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Fu Q, Levine BD, Pawelczyk JA, Ertl AC, Diedrich A, Cox JF, Zuckerman JH, Ray CA, Smith ML, Iwase S, Saito M, Sugiyama Y, Mano T, Zhang R, Iwasaki K, Lane LD, Buckey JC, Cooke WH, Robertson RM, Baisch FJ, Blomqvist CG, Eckberg DL, Robertson D, Biaggioni I (2002) Cardiovascular and sympathetic neural responses to handgrip and cold pressor stimuli in humans before, during and after spaceflight. J Physiol 544:653–664

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Fu Q, Vangundy TB, Shibata S, Auchus RJ, Williams GH, Levine BD (2011) Exercise training versus propranolol in the treatment of the postural orthostatic tachycardia syndrome. Hypertension 58:167–175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Galbreath MM, Shibata S, VanGundy TB, Okazaki K, Fu Q, Levine BD (2011) Effects of exercise training on arterial-cardiac baroreflex function in POTS. Clin Auton Res Off J Clin Auton Res Soc 21:73–80

    Article  Google Scholar 

  29. Hargens AR, Richardson S (2009) Cardiovascular adaptations, fluid shifts, and countermeasures related to space flight. Respir Physiol Neurobiol 169(Suppl 1):S30–S33

    Article  PubMed  Google Scholar 

  30. Hoffler G, Johnson R (1975) Apollo Flight Crew Cardiovascular Evaluations. NASA Headquarters, Washington, D.C.

    Google Scholar 

  31. Hughson RL, Shoemaker JK, Blaber AP, Arbeille P, Greaves DK, Pereira-Junior PP, Xu D (2012) Cardiovascular regulation during long-duration spaceflights to the International Space Station. J Appl Physiol 112:719–727

    Article  CAS  PubMed  Google Scholar 

  32. Hume KM, Ray CA (1999) Sympathetic responses to head-down rotations in humans. J Appl Physiol Bethesda Md 1985(86):1971–1976

    Google Scholar 

  33. Jian BJ, Cotter LA, Emanuel BA, Cass SP, Yates BJ (1999) Effects of bilateral vestibular lesions on orthostatic tolerance in awake cats. J Appl Physiol Bethesda Md 1985(86):1552–1560

    Google Scholar 

  34. Karemaker JM, Berecki-Gisolf J (2009) 24-h blood pressure in space: the dark side of being an astronaut. Respir Physiol Neurobiol 169:S55–S58

    Article  PubMed  Google Scholar 

  35. Karemaker JM, Gisolf J, Stok WJ, van Montfrans GA (2007) 24-hr blood pressure in HDT-bed rest and short-lasting space flight. J Gravitational Physiol J Int Soc Gravitational Physiol 14:P49–P50

    Google Scholar 

  36. Kaufmann H, Biaggioni I, Voustianiouk A, Diedrich A, Costa F, Clarke R, Gizzi M, Raphan T, Cohen B (2002) Vestibular control of sympathetic activity: an otolith-sympathetic reflex in humans. Exp Brain Res 143:463–469

    Article  CAS  PubMed  Google Scholar 

  37. Kleiger RE, Miller JP, Bigger JT Jr, Moss AJ (1987) Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol 59:256–262

    Article  CAS  PubMed  Google Scholar 

  38. Kvetnansky R, Noskov VB, Blazicek P, Gharib C, Popova IA, Gauquelin G, Macho L, Guell A, Grigoriev AI (1991) Activity of the sympathoadrenal system in cosmonauts during 25-day space flight on station Mir. Acta Astronaut 23:109–116

    Article  CAS  PubMed  Google Scholar 

  39. Leach CS, Alfrey CP, Suki WN, Leonard JI, Rambaut PC, Inners LD, Smith SM, Lane HW, Krauhs JM (1996) Regulation of body fluid compartments during short-term spaceflight. J Appl Physiol Bethesda Md 1985(81):105–116

    Google Scholar 

  40. Leach CS, Altchuler SI, Cintron-Trevino NM (1983) The endocrine and metabolic responses to space flight. Med Sci Sports Exerc 15:432–440

    Article  CAS  PubMed  Google Scholar 

  41. Levine BD, Pawelczyk JA, Ertl AC, Cox JF, Zuckerman JH, Diedrich A, Biaggioni I, Ray CA, Smith ML, Iwase S (2002) Human muscle sympathetic neural and haemodynamic responses to tilt following spaceflight. J Physiol 538:331–340

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Levine BD, Zuckerman JH, Pawelczyk JA (1997) Cardiac atrophy after bed-rest deconditioning: a non-neural mechanism for orthostatic intolerance. Circulation 96:517–525

    Article  CAS  PubMed  Google Scholar 

  43. Malliani A, Lombardi F, Pagani M (1994) Power spectrum analysis of heart rate variability: a tool to explore neural regulatory mechanisms. Br Heart J 71:1

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Meck JV, Waters WW, Ziegler MG, deBlock HF, Mills PJ, Robertson D, Huang PL (2004) Mechanisms of postspaceflight orthostatic hypotension: low alpha1-adrenergic receptor responses before flight and central autonomic dysregulation postflight. Am J Physiol Heart Circ Physiol 286:H1486–H1495

    Article  CAS  PubMed  Google Scholar 

  45. Migeotte P-F, Prisk GK, Paiva M (2003) Microgravity alters respiratory sinus arrhythmia and short-term heart rate variability in humans. Am J Physiol Heart Circ Physiol 284:H1995–H2006

    Article  CAS  PubMed  Google Scholar 

  46. Moffitt JA, Heesch CM, Hasser EM (2002) Increased GABA(A) inhibition of the RVLM after hindlimb unloading in rats. Am J Physiol Regul Integr Comp Physiol 283:R604–R614

    Article  CAS  PubMed  Google Scholar 

  47. Moffitt JA, Schadt JC, Hasser EM (1999) Altered central nervous system processing of baroreceptor input following hindlimb unloading in rats. Am J Physiol 277:H2272–H2279

    CAS  PubMed  Google Scholar 

  48. Monahan KD, Ray CA (2002) Vestibulosympathetic reflex during orthostatic challenge in aging humans. Am J Physiol Regul Integr Comp Physiol 283:R1027–R1032

    Article  PubMed  Google Scholar 

  49. Moore ST, Diedrich A, Biaggioni I, Kaufmann H, Raphan T, Cohen B (2005) Artificial gravity: a possible countermeasure for post-flight orthostatic intolerance. Acta Astronaut 56:867–876

    Article  PubMed  Google Scholar 

  50. Murray A, Ewing DJ, Campbell IW, Neilson JM, Clarke BF (1975) RR interval variations in young male diabetics. Br Heart J 37:882–885

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Norsk P (2014) Blood pressure regulation IV: adaptive responses to weightlessness. Eur J Appl Physiol 114:481–497

    Article  PubMed  Google Scholar 

  52. Norsk P, Damgaard M, Petersen L, Gybel M, Pump B, Gabrielsen A, Christensen NJ (2006) Vasorelaxation in Space. Hypertension 47:69–73

    Article  CAS  PubMed  Google Scholar 

  53. Norsk P, Drummer C, Röcker L, Strollo F, Christensen NJ, Warberg J, Bie P, Stadeager C, Johansen LB, Heer M (1995) Renal and endocrine responses in humans to isotonic saline infusion during microgravity. J Appl Physiol Bethesda Md 1985(78):2253–2259

    Google Scholar 

  54. Pagani M, Montano N, Porta A, Malliani A, Abboud FM, Birkett C, Somers VK (1997) Relationship between spectral components of cardiovascular variabilities and direct measures of muscle sympathetic nerve activity in humans. Circulation 95:1441–1448

    Article  CAS  PubMed  Google Scholar 

  55. Parsaik A, Allison TG, Singer W, Sletten DM, Joyner MJ, Benarroch EE, Low PA, Sandroni P (2012) Deconditioning in patients with orthostatic intolerance. Neurology 79:1435–1439

    Article  PubMed Central  PubMed  Google Scholar 

  56. Radtke A, Popov K, Bronstein AM, Gresty MA (2000) Evidence for a vestibulo-cardiac reflex in man. Lancet 356:736–737

    Article  CAS  PubMed  Google Scholar 

  57. Ray CA, Hume KM (1998) Neck afferents and muscle sympathetic activity in humans: implications for the vestibulosympathetic reflex. J Appl Physiol Bethesda Md 1985(84):450–453

    Google Scholar 

  58. Reschke MF, Bloomberg JJ, Harm DL, Paloski WH, Layne C, McDonald V (1998) Posture, locomotion, spatial orientation, and motion sickness as a function of space flight. Brain Res Brain Res Rev 28:102–117

    Article  CAS  PubMed  Google Scholar 

  59. Di Rienzo M, Castiglioni P, Iellamo F, Volterrani M, Pagani M, Mancia G, Karemaker JM, Parati G (2008) Dynamic adaptation of cardiac baroreflex sensitivity to prolonged exposure to microgravity: data from a 16-day spaceflight. J Appl Physiol 105:1569–1575

    Article  PubMed  Google Scholar 

  60. Swierblewska E, Hering D, Kara T, Kunicka K, Kruszewski P, Bieniaszewski L, Boutouyrie P, Somers VK, Narkiewicz K (2010) An independent relationship between muscle sympathetic nerve activity and pulse wave velocity in normal humans. J Hypertens 28:979–984

    Article  CAS  PubMed  Google Scholar 

  61. Tank J, Baevsky RM, Funtova II, Diedrich A, Slepchenkova IN, Jordan J (2011) Orthostatic heart rate responses after prolonged space flights. Clin Auton Res 21:121–124

    Article  PubMed  Google Scholar 

  62. Tosini G, Aguzzi J (2005) Effect of space flight on circadian rhythms. Adv Space Biol Med 10:165–174

    PubMed  Google Scholar 

  63. Verheyden B, Liu J, Beckers F, Aubert AE (2009) Adaptation of heart rate and blood pressure to short and long duration space missions. Respir Physiol Neurobiol 169:S13–S16

    Article  PubMed  Google Scholar 

  64. Verheyden B, Liu J, Beckers F, Aubert AE (2010) Operational point of neural cardiovascular regulation in humans up to 6 months in space. J Appl Physiol Bethesda Md 1985(108):646–654

    Google Scholar 

  65. Watenpaugh DE, Buckey JC, Lane LD, Gaffney FA, Levine BD, Moore WE, Wright SJ, Blomqvist CG (2001) Effects of spaceflight on human calf hemodynamics. J Appl Physiol 90:1552–1558

    CAS  PubMed  Google Scholar 

  66. Woodring SF, Rossiter CD, Yates BJ (1997) Pressor response elicited by nose-up vestibular stimulation in cats. Exp Brain Res 113:165–168

    Article  CAS  PubMed  Google Scholar 

  67. Wood SJ, Ramsdell CD, Mullen TJ, Oman CM, Harm DL, Paloski WH (2000) Transient cardio-respiratory responses to visually induced tilt illusions. Brain Res Bull 53:25–31

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Institutes of Health grants M01 RR00095, 5P01 HL56693. We thank the NEUROLAB team, especially Dr. Dwain Eckberg and Dr. Ben Levine, for the advice and support. We thank Dr. Jens Tank for providing detailed data from the ISS Pneumocard study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Diedrich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandsager, K.T., Robertson, D. & Diedrich, A. The function of the autonomic nervous system during spaceflight. Clin Auton Res 25, 141–151 (2015). https://doi.org/10.1007/s10286-015-0285-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10286-015-0285-y

Keywords

Navigation