Skip to main content
Log in

Classification et signatures moléculaires des cancers du sein en 2017

Molecular taxonomy and signatures of breast cancer in 2017

  • Mise au Point / Update
  • Published:
Oncologie

Résumé

Les cancers du sein sont subdivisés selon leur degré d’expression des récepteurs hormonaux et du gène HER2. La classification moléculaire a bouleversé cette conception simpliste en mettant en lumière de multiples profils de pronostics différents. C’est dans ce contexte, et devant la nécessité d’employer des traitements ciblés que sont nées les signatures moléculaires. Bien qu’elles diffèrent par les méthodes employées (qRT-PCR, microarray ou dérivés type n-counter), elles ont les mêmes objectifs: calculer un score pronostique, fondé sur les niveaux d’expression de gènes impliqués dans la cancérogenèse, et si possible prédire la réponse au traitement. Applicables essentiellement aux tumeurs luminales RE+, elles ont prouvé leur valeur pronostique dans de vastes essais prospectifs, et les experts souhaitent les intégrer dans la décision thérapeutique, actuellement établie sur les critères clinicopathologiques. Par ailleurs, comparativement aux coûts d’une chimiothérapie, les signatures moléculaires apportent un réel bénéfice financier et permettent d’équilibrer la balance bénéfice/risque en diminuant le recours à des traitements agressifs parfois inefficaces.

Abstract

Breast cancers are best classified according to their level of hormone receptors and HER2 gene expression. Molecular classification has modified this simplistic taxonomy highlighting multiple profiles with different prognosis. It is in this context, and given the need to use targeted therapies, that molecular signatures were developed. Although they differ in methods (qRT-PCR, micro-array, or derivatives), molecular signatures endorse the same objectives: calculate a prognostic score based on the levels of gene expression involved in carcinogenesis, and, if possible, predict response to treatment. Applicable mainly to luminal ERpositive tumors, molecular signatures have proven their prognostic value in large prospective clinical trials and experts now look forward to integrate them in the therapeutic decision, which is currently based on clinico-pathological criteria. Furthermore, compared to the cost of chemotherapy, molecular signatures provide a real financial benefit and help to equilibrate the risk–benefit balance by reducing the use of aggressive treatments that are sometimes ineffective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Wirapati P, Sotiriou C, Kunkel S, et al (2008) Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures. Breast Cancer Res 10:R65

    Article  PubMed  PubMed Central  Google Scholar 

  2. Coates AS, Winer EP, Goldhirsch A, et al (2015) Tailoring therapies — improving the management of early breast cancer: St Gallen International Expert Consensus on the primary therapy of early breast cancer 2015. Ann Oncol 26:1533–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Harris LN, Ismaila N, Mc Shane LM, et al (2016) Use of biomarkers to guide decisions on adjuvant systemic therapy for women with early-stage invasive breast cancer: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol 34:1134–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tian S, Roepman P, Van’t Veer LJ, et al (2010) Biological functions of the genes in the mammaprint breast cancer profile reflect the hallmarks of cancer. Biomark Insights 5:129–38

    PubMed  PubMed Central  Google Scholar 

  5. Cardoso F, van’t Veer LJ, Bogaerts J, et al (2016) 70-gene signature as an aid to treatment decisions in early-stage breast cancer. N Engl J Med 375:717–29

    Article  CAS  PubMed  Google Scholar 

  6. Cremoux PD (2012) Signatures moléculaires des cancers. John Libbey Eurotext, 140 p

    Google Scholar 

  7. Ignatiadis M, Azim HA, Desmedt C, et al (2016) The Genomic Grade Assay compared with Ki67 to determine risk of distant breast cancer recurrence. JAMA Oncol 2:217–24

    Article  PubMed  Google Scholar 

  8. Sotiriou C, Wirapati P, Loi S, et al (2006) Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 98:262–72

    Article  CAS  PubMed  Google Scholar 

  9. Ma XJ, Salunga R, Dahiya S, et al (2008) A five-gene molecular grade index and HOXB13:IL17BR are complementary prognostic factors in early stage breast cancer. Clin Cancer Res 14:2601–8

    Article  CAS  PubMed  Google Scholar 

  10. Fitzal F, Filipits M, Rudas M, et al (2015) The genomic expression test EndoPredict is a prognostic tool for identifying risk of local recurrence in postmenopausal endocrine receptor-positive, her2neu-negative breast cancer patients randomised within the prospective ABCSG 8 trial. Br J Cancer 112:1405–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nielsen TO, Parker JS, Leung S, et al (2010) A comparison of PAM50 intrinsic subtyping with immunohistochemistry and clinical prognostic factors in tamoxifen-treated estrogen receptorpositive breast cancer. Clin Cancer Res 16:5222–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nielsen T, Wallden B, Schaper C, et al (2014) Analytical validation of the PAM50-based Prosigna Breast Cancer Prognostic Gene Signature Assay and nCounter Analysis System using formalinfixed paraffin-embedded breast tumor specimens. BMC Cancer 14:177

    Article  PubMed  PubMed Central  Google Scholar 

  13. Huo D, Clayton WM, Yoshimatsu TF, et al (2016) Identification of a circulating MicroRNA signature to distinguish recurrence in breast cancer patients. Oncotarget doi: 10.18632/oncotarget.10485. [Epub ahead of print]

    Google Scholar 

  14. Sparano JA, Gray RJ, Makower DF, et al (2015) Prospective validation of a 21-gene expression assay in breast cancer. N Engl J Med 373:2005–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mittempergher L, de Ronde JJ, Nieuwland M, et al (2011) Gene expression profiles from formalin fixed paraffin embedded breast cancer tissue are largely comparable to fresh frozen matched tissue. PloS One 6:e17163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sapino A, Roepman P, Linn SC, et al (2014) MammaPrint molecular diagnostics on formalin-fixed, paraffin-embedded tissue. J Mol Diagn 16:190–7

    Article  CAS  PubMed  Google Scholar 

  17. Fan C, Oh DS, Wessels L, et al (2006) Concordance among geneexpression-based predictors for breast cancer. N Engl J Med 355:560–9

    Article  CAS  PubMed  Google Scholar 

  18. Sestak I, Buus R, Cuzick J, et al (2016) Comprehensive comparison of prognostic signatures for breast cancer recurrence in transATAC. San Antonio Breast Cancer Symposium, S6–S05

    Google Scholar 

  19. Reyal F, van Vliet MH, Armstrong NJ, et al (2008) A comprehensive analysis of prognostic signatures reveals the high predictive capacity of the proliferation, immune response and RNA splicing modules in breast cancer. Breast Cancer Res 10:R93

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bartlett JM, Bayani J, Marshall A, et al (2016) Comparing breast cancer multiparameter tests in the OPTIMA Prelim Trial: no test is more equal than the others. J Natl Cancer Inst 108. pii: djw050. doi: 10.1093/jnci/djw050

  21. Beitsch P, Whitworth P, Baron P, et al (2016) Genomic impact of neoadjuvant therapy on breast cancer: incomplete response is associated with altered diagnostic gene signatures. Ann Surg Oncol 23:3317–23

    Article  PubMed  Google Scholar 

  22. Dieci MV, Prat A, Tagliafico E, et al (2016) Integrated evaluation of PAM50 subtypes and immune modulation of pCR in HER2-positive breast cancer patients treated with chemotherapy and HER2-targeted agents in the CherLOB trial. Ann Oncol 27:1867–73

    Article  CAS  PubMed  Google Scholar 

  23. Tobin NP, Harrell JC, Lövrot J, et al (2015) Molecular subtype and tumor characteristics of breast cancer metastases as assessed by gene expression significantly influence patient post-relapse survival. Ann Oncol 26:81–8

    Article  CAS  PubMed  Google Scholar 

  24. Falato C, Tobin NP, Lorent J, et al (2016) Intrinsic subtypes and genomic signatures of primary breast cancer and prognosis after systemic relapse. Mol Oncol 10:517–25

    Article  PubMed  Google Scholar 

  25. Franchet C, Duprez-Paumier R, Lacroix-Triki M (2015) Molecular taxonomy of luminal breast cancer in 2015. Bull Cancer 102: S34–S46

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lacroix-Triki.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joyon, N., Penault-Llorca, F. & Lacroix-Triki, M. Classification et signatures moléculaires des cancers du sein en 2017. Oncologie 19, 64–70 (2017). https://doi.org/10.1007/s10269-017-2700-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10269-017-2700-6

Mots clés

Keywords

Navigation