Skip to main content
Log in

Les outils d’apprentissage en chirurgie robotique

Training tools for robotic surgery

  • Mise au Point / Update
  • Published:
Oncologie

Résumé

La combinaison de chirurgies complexes, notamment en oncologie, et d’une interface homme–machine nécessitant une nouvelle gestuelle chirurgicale impose la structuration de l’apprentissage en chirurgie robotique. Une pédagogie idéale face à cet enjeu doit répondre à trois exigences : limiter le nombre d’erreurs, réduire la courbe d’apprentissage sur le patient et, enfin, certifier chaque compétence du chirurgien et de l’équipe. Le développement rapide de la chirurgie robotique a plusieurs fois été confronté, en France et aux États- Unis, au débat sur une formation insuffisante ou inadéquate des chirurgiens. Nous proposons dans cet article un plan en quatre étapes pour réussir sa formation robotique. Il faut dans un premier temps lister les compétences spécifiques à la chirurgie robotique, la conférence de consensus « Fundamentals of Robotic Surgery » a pour cela défini les 25 items de formation fondamentaux, mais la liste sera personnalisée selon l’expérience antérieure du chirurgien. La deuxième étape sera le choix des outils de formation précliniques (cours théoriques, exercices inanimés, entraînements sur tissus, travail sur animal et/ou cadavre et simulation virtuelle) et cliniques (observation, pratique de l’aide opératoire et pratique chirurgicale en compagnonnage). Ensuite, il faudra standardiser l’évaluation et la certification des professionnels de santé ; de nombreux outils existent : R-OSATS, GEARS, checklists, évaluation automatisée sur simulateur, analyse des mouvements, analyse des données du robot, modèles statistiques de Markov… In fine, il faudra organiser un programme de formation, personnalisé selon les objectifs de chaque équipe chirurgicale, faisant appel à plusieurs modalités et incluant des évaluations standardisées. L’objectif final étant l’introduction en toute sécurité de cette nouvelle technologie dans les blocs opératoires.

Abstract

The combination of complex surgeries, in particular within the field of oncology, and the man–machine interface requiring new surgical techniques means that training in robotic surgery must be well structured. With this challenge in mind, the ideal form of teaching should focus on meeting three requirements: limiting the number of errors, reducing the learning curve on the patient and finally certifying each of the surgeon’s and team’s skills. There has been much debate in both France and the USA regarding the rapid development of robotic surgery and the lack of adequate and appropriate training for surgeons. In this paper, we are proposing a four-stage plan to meet these robotic surgery training needs. Initially, a list of skills specific to robotic surgery needs to be created. The Fundamentals of Robotic Surgery consensus conference has defined 25 basic training areas, however the list will be adapted, based on the previous experience of the surgeon. The second stage will be to select the pre-clinical (theory courses, model exercises, training on tissue samples, training on animals and/or cadavers and virtual reality simulation) and clinical (observations, surgical-assistant practice and mentor-observed surgical practice) training tools. Next, there will need to be standardisation of the assessment and certification methods for healthcare professionals; numerous tools are currently available: R-OSATS, GEARS, checklists, simulator-based automated assessment, movement analysis, robot data analysis, Markov statistical models, etc. Finally, a training programme will need to be organised, adapted to meet the objectives of each surgical team, drawing on multiple methods and including standardised assessments. The final objective being the safe introduction of this new technology into operating theatres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Herron DM, Marohn M, SAGES–MIRA Robotic Surgery Consensus Group (2007) A consensus document on robotic surgery. Surg Endosc 22: 313–25

    Article  PubMed  Google Scholar 

  2. Alemzadeh H, Iyer RK, Kalbarczyk Z, et al. (2015) Adverse events in robotic surgery: a retrospective study of 14 years of FDA data. http://hdl.handle.net/2142/88411

    Google Scholar 

  3. Ardiot S (2014) Bilan de l’enquête concernant les robots chirurgicaux Da Vinci® de la société Intuitive Surgical®. www.ansm.sante.fr/var/ansm_site/storage/original/application/7bbc135f1a183ab2873686b2175bb8b4.pdf

    Google Scholar 

  4. Barbier E, Theveniaud PE, Claudon M, et al. (2014) Eight years of experience in robot-assisted partial nephrectomy: oncological and functional outcomes. J Prog Urol 24: 185–90

    Article  CAS  Google Scholar 

  5. Buchs NC (2015) Robotic technology: optimizing the outcomes in rectal cancer? World J Clin Oncol 6: 22–4

    Article  PubMed  PubMed Central  Google Scholar 

  6. Medlin EE, Kushner DM, Barroilhet L (2016) Robotic surgery for early stage cervical cancer: evolution and current trends. J Surg Oncol 112: 772–81

    Article  Google Scholar 

  7. Perrenot C, Phulpin B, Mastronicola R, et al. (2014) Infrahyoid myocutaneous flap for reconstruction after robotic transoral surgery for oropharyngeal tumors. Plast Reconstr Surg 133: 236e–7e

    Article  CAS  PubMed  Google Scholar 

  8. Toesca A, Peradze N, Galimberti V, et al. (2015) Robotic nipplesparing mastectomy and immediate breast reconstruction with implant: first report of surgical technique. Ann Surg [Epub ahead of print]

    Google Scholar 

  9. Franasiak J, Craven R, Mosaly P, et al. (2014) Feasibility and acceptance of a Robotic Surgery Ergonomic Training Program. JSLS 18: e2014.00166

    Article  Google Scholar 

  10. Smith R, Patel V, Satava R (2014) Fundamentals of robotic surgery: a course of basic robotic surgery skills based upon a 14-society consensus template of outcomes measures and curriculum development. Int J Med Robot 10: 379–84

    Article  PubMed  Google Scholar 

  11. Sun AJ, Aron M, Hung AJ (2014) Novel training methods for robotic surgery. Indian J Urol 30: 333–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Buchs NC, Pugin F, Volonté F, et al. (2013) Learning tools and simulation in robotic surgery: state of the art. World J Surg 37: 2812–9

    Article  PubMed  Google Scholar 

  13. Plateforme de formation en ligne. http://www.davincisurgerycommunity.com

  14. Plateforme de formation en ligne. http://www.frssurgery.org

  15. Fernandes E, Elli E, Giulianotti P (2014) The role of the dual console in robotic surgical training. Surgery 155: 1–4

    Article  PubMed  Google Scholar 

  16. Fantola G, Perrenot C, Germain A, et al. (2014) Simulator practice is not enough to become a robotic surgeon: the driving lessons model. J Lap Adv Surg Tech 24: 260

    Article  Google Scholar 

  17. Perrenot C, Perez M, Tran N, et al. (2012) The virtual reality simulator dV-Trainer® is a valid assessment tool for robotic surgical skills. Surg Endosc 26: 2587–93

    Article  PubMed  Google Scholar 

  18. Abboudi H, Khan MS, Aboumarzouk O, et al. (2013) Current status of validation for robotic surgery simulators — a systematic review. BJU Int 111: 194–205

    Article  PubMed  Google Scholar 

  19. Liss MA, Kane CJ, Chen T, et al. (2015) Virtual reality suturing task as an objective test for robotic experience assesment. BMC Urol 15: 63

    Article  PubMed  PubMed Central  Google Scholar 

  20. Seixas-Mikelus SA, Kesavadas T, Srimathveeravalli G, et al. (2010) Face validation of a novel surgical simulator. Urology 76: 357–60

    Article  PubMed  Google Scholar 

  21. Whittaker G, Aydin A, Raison N, et al. (2016) Validation of the RobotiX Mentor® robotic surgery simulator. J Endourol [Epub ahead of print].

    Google Scholar 

  22. Xu S, Perez M, Perrenot C, et al. (2015) Face, content, construct, and concurrent validity of a novel robotic surgery patient-side simulator: the Xperience Team Trainer®. Surg Endosc [Epub ahead of print]

    Google Scholar 

  23. Fantola G, Perrenot C, Frisoni R, et al. (2014) Robotic Rouxen-Y-gastric bypass surgical simulation curriculum. Obes Surg 24: 1833–4

    Article  CAS  PubMed  Google Scholar 

  24. Hung AJ, Jayaratna IS, Teruya K, et al. (2013) Comparative assessment of three standardized robotic surgery training methods. BJU Int 112: 8634–71

    Article  Google Scholar 

  25. Dulan G, Rege RV, Hogg DC, et al. (2012) Developing a comprehensive, proficiency-based training program for robotic surgery. Surgery 152: 477–88

    Article  PubMed  Google Scholar 

  26. Marecik SJ, Prasad LM, Park JJ, et al. (2007) Evaluation of midlevel and upper-level residents performing their first roboticsutured intestinal anastomosis. Am J Surg 195: 333–7

    Article  Google Scholar 

  27. Guru KA, Esfahani ET, Raza SJ, et al. (2015) Cognitive skills assesment during robot-assisted surgery: separating the wheat from the chaff. BJU Int 115: 166–74

    Article  PubMed  Google Scholar 

  28. Sabour S (2014) Validity and reliability of the robotic objective structured assessment of technical skills. Obstet Gynecol 124: 839

    Article  PubMed  Google Scholar 

  29. Goh AC, Goldfarb DW, Sander JC, et al. (2012) Global evaluative assesment of robotic skills: validation of a clinical assesment tool to measure robotic surgical skills. J Urol 187: 247–52

    Article  PubMed  Google Scholar 

  30. Guseila LM, Saranathan A, Jenison EL, et al. (2014) Training to maintain surgical skills during periods of robotic surgery inactivity. Int J Med Robot 10: 237–43

    Article  PubMed  Google Scholar 

  31. Lendvay TS, Brand TC, White L, et al. (2013) Virtual reality robotic surgery warm-up improves task performance in a dry laboratory environment: a prospective randomized controlled study. J Am Coll Surg 216: 1181–92

    Article  PubMed  PubMed Central  Google Scholar 

  32. Granry JC, Moll MC (2012) Rapport de mission: État de l’art (national et international) en matière de pratiques de simulation dans le domaine de la santé. Guide de bonnes pratiques en matière de simulation en santé. www.has-sante.fr

    Google Scholar 

  33. Foell K, Finelli A, Yasufuku K, et al. (2013) Robotic surgery basic skills training: evaluation of a pilot multidisciplinary simulationbased curriculum. Can Urol Assoc J 7: 430–4

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rossitto C, Gueli Alletti S, Fanfani F, et al. (2015) Learning a new robotic surgical device: Telelap Alf X® in gynaecological surgery. Int J Med Robot [Epub ahead of print]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Perrenot.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perrenot, C., Perez, M. Les outils d’apprentissage en chirurgie robotique. Oncologie 18, 277–286 (2016). https://doi.org/10.1007/s10269-016-2621-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10269-016-2621-9

Mots clés

Keywords

Navigation