Skip to main content
Log in

Congrès de l’association américaine de recherche contre le cancer — AACR 2015

American Association for Cancer Research — AACR congress, 2015

  • Compte Rendu / Report
  • Published:
Oncologie

Résumé

Dans ce numéro spécial de la revue Oncologie, l’Association d’enseignement et de recherche des internes d’oncologie (AERIO), constamment engagée à améliorer l’éducation et la formation des futurs chercheurs et oncologues, résume les principaux points, de par leur pertinence, discutés au congrès de l’Association américaine pour la recherche sur le cancer (AACR). Notre objectif ici est de présenter de manière concise des exposés qui méritent une attention toute particulière. Cette année, l’AACR s’est notamment concentré sur comment transposer et apporter les découvertes scientifiques aux patients. Le congrès qui a duré cinq jours a proposé un programme multidisciplinaire couvrant tous les aspects de la recherche sur le cancer depuis ses bases fondamentales jusqu’à ses applications translationnelles et cliniques. Ce congrès en outre met en avant les dernières innovations en termes de traitements personnalisés développés grâce à la caractérisation génétique des tumeurs. De plus, grâce à notre compréhension accrue des bases moléculaires du cancer, de nombreuses thérapies ciblées nouvelles ont émergé. Ainsi, notre compréhension sur la façon dont les tumeurs échappent aux attaques du système immunitaire a conduit au développement de nouvelles thérapies. Compte tenu de l’importance accrue de l’immunothérapie dans le traitement du cancer, nous présentons aussi ici les dernières avancées dans ce domaine. Enfin, d’autres approches, telles que la prévention et le dépistage précoce du cancer, ont aussi été citées au congrès de l’AACR comme des facteurs essentiels dans la réduction de la mortalité liée au cancer.

Abstract

In this special issue of Oncologie, the French association AERIO (Association d’enseignement et de recherche des internes d’oncologie), constantly committed to improve education and training of early researchers and investigators, summarizes the most relevant topics that were presented at the American Association for Cancer Research (AACR) meeting. Our purpose here is to give the readers a concise report of the presentations that warrant particular attention. This year, the AACR meeting focused on how to bring research discoveries to the patients. It was a five-day multidisciplinary program covering all aspects of cancer science from basic to translational as well as to clinical research. The meeting highlighted the latest and the most exciting findings, including new personalized medicines developed, thanks to the genetic characterization of the tumors. As a result of the great improvement of our knowledge on the molecular basis of cancer, many new targeted therapies have emerged recently. Our understanding on how tumors evade the immune system attack is a good example of this approach leading to the design of novel therapies. Given the increasing importance of cancer immunotherapy, we discuss herein the most recent achievements accomplished in this field. Finally, approaches involving both cancer prevention and early screenings were also cited at the AACR meeting as essential factors in the reduction of the disease mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. Cancer Cell 12: 9–22. doi: 10.1016/j.ccr.2007.05.008

    CAS  PubMed  Google Scholar 

  2. Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18: 1926–45. doi: 10.1101/gad.1212704

    CAS  PubMed  Google Scholar 

  3. Sarbassov DD, Ali SM, Kim DH, et al. (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol CB 14: 1296–302. doi: 10.1016/j.cub.2004.06.054

    CAS  PubMed  Google Scholar 

  4. Kim DH, Sarbassov DD, Ali SM, et al. (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110: 163–75

    CAS  PubMed  Google Scholar 

  5. Delgoffe GM, Pollizzi KN, Waickman AT, et al. (2011) The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol 12: 295–303. doi: 10.1038/ni.2005

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Hamilton KS, Phong B, Corey C, et al. (2014) T cell receptor-dependent activation of mTOR signaling in T cells is mediated by Carma1 and MALT1, but not Bcl10. Sci Signal 7: 55. doi: 10.1126/scisignal.2005169

    Google Scholar 

  7. Narayan P, Holt B, Tosti R, Kane LP (2006) Carma1 is required for Akt-mediated NF-kappaB activation in T cells. Mol Cell Biol 26: 2327–36. doi: 10.1128/MCB.26.6.2327-2336.2006

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Nakaya M, Xiao Y, Zhou X, et al. (2014) Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity 40: 692–705. doi: 10.1016/j.immuni.2014.04.007

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Nicklin P, Bergman P, Zhang B, et al. (2009) Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136: 521–34. doi: 10.1016/j.cell.2008.11.044

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Poffenberger MC, Jones RG (2014) Amino acids fuel T cellmediated inflammation. Immunity 40: 635–7. doi: 10.1016/j.immuni.2014.04.017

    CAS  PubMed  Google Scholar 

  11. Bensinger SJ, Bradley MN, Joseph SB, et al. (2008) LXR signaling couples sterol metabolism to proliferation in the acquired immune response. Cell 134: 97–111. doi: 10.1016/j.cell.2008.04.052

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Bensinger SJ, Tontonoz P (2008) Integration of metabolism and inflammation by lipid-activated nuclear receptors. Nature 454: 470–7. doi: 10.1038/nature07202

    CAS  PubMed  Google Scholar 

  13. Kidani Y, Elsaesser H, Hock MB, et al. (2013) Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity. Nat Immunol 14: 489–99. doi: 10.1038/ni.2570

    PubMed Central  CAS  PubMed  Google Scholar 

  14. De Vries IJM, Lesterhuis WJ, Barentsz JO, et al. (2005) Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol 23: 1407–13. doi: 10.1038/nbt1154

    PubMed  Google Scholar 

  15. Ahrens ET, Flores R, Xu H, Morel PA (2005) In vivo imaging platform for tracking immunotherapeutic cells. Nat Biotechnol 23: 983–7. doi: 10.1038/nbt1121

    CAS  PubMed  Google Scholar 

  16. Aarntzen EHJG, Srinivas M, Radu CG, et al. (2013) In vivo imaging of therapy-induced anti-cancer immune responses in humans. Cell Mol Life Sci CMLS 70: 2237–2257. doi: 10.1007/s00018-012-1159-2

    CAS  PubMed  Google Scholar 

  17. Aarntzen EHJG, Srinivas M, Punt CJA, et al. (2012) Insight into the dynamics, localization and magnitude of antigen-specific immune responses by [(18)F]FLT PET imaging. Oncoimmunology 1: 744–5. doi: 10.4161/onci.19533

    PubMed Central  PubMed  Google Scholar 

  18. Ahrens ET, Helfer BM, O’Hanlon CF, Schirda C (2014) Clinical cell therapy imaging using a perfluorocarbon tracer and fluorine-19 MRI. Magn Reson Med 72: 1696–701. doi: 10.1002/mrm.25454

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Aarntzen EHJG, Srinivas M, Walczak P, et al. (2012) In vivo tracking techniques for cellular regeneration, replacement, and redirection. J Nucl Med Off Publ Soc Nucl Med 53: 1825–8. doi: 10.2967/jnumed.112.106146

    CAS  Google Scholar 

  20. Aarntzen EHJG, Srinivas M, DeWilt JHW, et al. (2011) Early identification of antigen-specific immune responses in vivo by [18F]-labeled 3’-fluoro-3’-deoxy-thymidine ([18F]FLT) PET imaging. Proc Natl Acad Sci USA 108: 18396–19. doi: 10.1073/pnas.1113045108

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Srinivas M, Turner MS, Janjic JM, et al. (2009) In vivo cytometry of antigen-specific t cells using 19F MRI. Magn Reson Med 62: 747–53. doi: 10.1002/mrm.22063

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39: 1–10. doi: 10.1016/j.immuni.2013.07.012

    PubMed  Google Scholar 

  23. Dudley ME, Gross CA, Somerville RPT, et al. (2013) Randomized selection design trial evaluating CD8+-enriched versus unselected tumor-infiltrating lymphocytes for adoptive cell therapy for patients with melanoma. J Clin Oncol Off J Am Soc Clin Oncol 31: 2152–9. doi: 10.1200/JCO.2012.46.6441

    CAS  Google Scholar 

  24. Hinrichs CS, Rosenberg SA (2014) Exploiting the curative potential of adoptive T-cell therapy for cancer. Immunol Rev 257: 56–71. doi: 10.1111/imr.12132

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Robert C, Long GV, Brady B, et al. (2015) Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 372: 320–30. doi: 10.1056/NEJMoa1412082

    CAS  PubMed  Google Scholar 

  26. Ansell SM, Lesokhin AM, Borrello I, et al. (2015) PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med 372: 311–9. doi: 10.1056/NEJMoa1411087

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Brahmer J, Reckamp KL, Baas P, et al. (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373(2):123–35. doi: 10.1056/NEJMoa1504627

    CAS  PubMed  Google Scholar 

  28. Schumacher TN, Schreiber RD (2015) Neoantigens in cancer immunotherapy. Science 348: 69–74. doi: 10.1126/science.aaa4971

    CAS  PubMed  Google Scholar 

  29. Van Rooij N, van Buuren MM, Philips D, et al. (2013) Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. J Clin Oncol Off J Am Soc Clin Oncol 31: 439–42. doi: 10.1200/JCO.2012.47.7521

    Google Scholar 

  30. Alexandrov LB, Nik-Zainal S, Wedge DC, et al. (2013) Signatures of mutational processes in human cancer. Nature 500: 415–21. doi: 10.1038/nature12477

    PubMed Central  CAS  PubMed  Google Scholar 

  31. De Bruin EC, McGranahan N, Mitter R, et al. (2014) Spatial and temporal diversity in genomic instability processes defines lung cancer evolution. Science 346: 251–6. doi: 10.1126/science.1253462

    PubMed  Google Scholar 

  32. Burns MB, Temiz NA, Harris RS (2013) Evidence for APOBEC3B mutagenesis in multiple human cancers. Nat Genet 45: 977–83. doi: 10.1038/ng.2701

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Hadrup SR, Bakker AH, Shu CJ, et al. (2009) Parallel detection of antigen-specific T-cell responses by multidimensional encoding of MHC multimers. Nat Methods 6: 520–6. doi: 10.1038/nmeth.1345

    CAS  PubMed  Google Scholar 

  34. Toebes M, Coccoris M, Bins A, et al. (2006) Design and use of conditional MHC class I ligands. Nat Med 12: 246–51. doi: 10.1038/nm1360

    CAS  PubMed  Google Scholar 

  35. Kroemer G, Zitvogel L (2012) Can the exome and the immunome converge on the design of efficient cancer vaccines? Oncoimmunology 1: 579–80. doi: 10.4161/onci.20730

    PubMed Central  PubMed  Google Scholar 

  36. Kvistborg P, Shu CJ, Heemskerk B, et al. (2012) TIL therapy broadens the tumor-reactive CD8+ T cell compartment in melanoma patients. Oncoimmunology 1: 409–18

    PubMed Central  PubMed  Google Scholar 

  37. Castle JC, Kreiter S, Diekmann J, et al. (2012) Exploiting the mutanome for tumor vaccination. Cancer Res 72: 1081–91. doi: 10.1158/0008-5472.CAN-11-3722

    CAS  PubMed  Google Scholar 

  38. Matsushita H, Vesely MD, Koboldt DC, et al. (2012) Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482: 400–4. doi: 10.1038/nature10755

    CAS  PubMed  Google Scholar 

  39. Rooney MS, Shukla SA, Wu CJ, et al. (2015) Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160: 48–61. doi: 10.1016/j.cell.2014.12.033

    CAS  PubMed  Google Scholar 

  40. Galon J, Costes A, Sanchez-Cabo F, et al. (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313: 1960–4. doi: 10.1126/science.1129139

    CAS  PubMed  Google Scholar 

  41. Hwang WT, Adams SF, Tahirovic E, et al. (2012) Prognostic significance of tumor-infiltrating T cells in ovarian cancer: a meta-analysis. Gynecol Oncol 124: 192–8. doi: 10.1016/j.ygyno.2011.09.039

    PubMed Central  PubMed  Google Scholar 

  42. Remark R, Becker C, Gomez JE, et al. (2015) The non-small cell lung cancer immune contexture. A major determinant of tumor characteristics and patient outcome. Am J Respir Crit Care Med 191: 377–90. doi: 10.1164/rccm.201409-1671PP

    CAS  PubMed  Google Scholar 

  43. Tumeh PC, Harview CL, Yearley JH, et al. (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515: 568–71. doi: 10.1038/nature13954

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Galon J, Mlecnik B, Bindea G, et al. (2014) Towards the introduction of the “Immunoscore” in the classification of malignant tumours. J Pathol 232: 199–209. doi: 10.1002/path.4287

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Garon EB, Rizvi NA, Hui R, et al. (2015) Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372: 2018–28. doi: 10.1056/NEJMoa1501824

    PubMed  Google Scholar 

  46. Powles T, Eder JP, Fine GD, et al. (2014) MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515: 558–62. doi: 10.1038/nature13904

    CAS  PubMed  Google Scholar 

  47. Kantarjian HM, Hochhaus A, Saglio G, et al. (2011) Nilotinib versus imatinib for the treatment of patients with newly diagnosed chronic phase, Philadelphia chromosome-positive, chronic myeloid leukaemia: 24-month minimum follow-up of the phase 3 randomised ENESTnd trial. Lancet Oncol 12: 841–51

    CAS  PubMed  Google Scholar 

  48. Bhang HEC, Ruddy DA, Krishnamurthy-Radhakrishna V, et al. (2015) Studying clonal dynamics in response to cancer therapy using high-complexity barcoding. Nat Med 21: 440–8

    CAS  PubMed  Google Scholar 

  49. Corcoran RB, Ebi H, Turke AB, et al. (2012) EGFR-mediated re-activation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discov 2: 227–35

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Ahronian LG, Sennott EM, Van Allen EM, et al. (2015) Clinical acquired resistance to RAF inhibitor combinations in BRAFmutant colorectal cancer through MAPK pathway alterations. Cancer Discov 5: 358–67

    CAS  PubMed  Google Scholar 

  51. Kurokawa H, Lenferink AE, Simpson JF, et al. (2000) Inhibition of HER2/neu (erbB-2) and mitogen-activated protein kinases enhances tamoxifen action against HER2-overexpressing, tamoxifen-resistant breast cancer cells. Cancer Res 60: 5887–94

    CAS  PubMed  Google Scholar 

  52. Miller TW, Hennessy BT, González-Angulo AM, et al. (2010) Hyperactivation of phosphatidylinositol-3 kinase promotes escape from hormone dependence in estrogen receptor-positive human breast cancer. J Clin Invest 120: 2406–13

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Miller TW, Balko JM, Fox EM, et al. (2011) ERa-dependent E2F transcription can mediate resistance to estrogen deprivation in human breast cancer. Cancer Discov 1: 338–51

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Jeselsohn R, Yelensky R, Buchwalter G, et al. (2014) Emergence of constitutively active estrogen receptor-a mutations in pretreated advanced estrogen receptor-positive breast cancer. Clin Cancer Res Off J Am Assoc Cancer Res 20: 1757–67

    CAS  Google Scholar 

  55. Fox EM, Kuba MG, Miller TW, et al. (2013) Autocrine IGFI/insulin receptor axis compensates for inhibition of AKT in ER-positive breast cancer cells with resistance to estrogen deprivation. Breast Cancer Res BCR 15: 55

    Google Scholar 

  56. Allen EMV, Wagle N, Sucker A, et al. (2014) The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov 4: 94–109

    PubMed Central  PubMed  Google Scholar 

  57. Konieczkowski DJ, Johannessen CM, Abudayyeh O, et al. (2014) A melanoma cell state distinction influences sensitivity to MAPK pathway inhibitors. Cancer Discov 4: 816–27

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Jamal-Hanjani M, Quezada SA, Larkin J, Swanton C (2015) Translational implications of tumor heterogeneity. Clin Cancer Res 21: 1258–66

    CAS  PubMed  Google Scholar 

  59. Juric D, Castel P, Griffith M, et al. (2015) Convergent loss of PTEN leads to clinical resistance to a PI(3)Ka inhibitor. Nature 518: 240–4

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Katayama R, Lovly CM, Shaw AT (2015) Therapeutic targeting of anaplastic lymphoma kinase in lung cancer: a paradigm for precision cancer medicine. Clin Cancer Res 21: 2227–35

    CAS  PubMed  Google Scholar 

  61. Shaw AT, Kim DW, Mehra R, et al. (2014) Ceritinib in ALKrearranged non-small-cell lung cancer. N Engl J Med 370: 1189–97

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Murai J, Huang SN, Das BB, et al. (2012) Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res 72: 5588–99

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Lord CJ, Ashworth A (2013) Mechanisms of resistance to therapies targeting BRCA-mutant cancers. Nat Med 19: 1381–8

    CAS  PubMed  Google Scholar 

  64. Pettitt SJ, Rehman FL, Bajrami I, et al. (2013) A genetic screen using the PiggyBac transposon in haploid cells identifies Parp1 as a mediator of olaparib toxicity. PloS One 8: 61520

    Google Scholar 

  65. Verhaak RG, Hoadley KA, Purdom E, et al. (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer cell 17: 98–110

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Debette S, Visvikis-Siest S, Chen MH, et al. (2011) Identification of cis- and trans-acting genetic variants explaining up to half the variation in circulating vascular endothelial growth factor levels. Circ Res 19: 554–563

    Google Scholar 

  67. Rogers MS, Rohan RM, Birsner AE, et al. (2003) Genetic loci that control vascular endothelial growth factor-induced angiogenesis. FASEB J 17: 2112–4

    CAS  PubMed  Google Scholar 

  68. Lambrechts D, Claes B, Delmar P, et al. (2012) VEGF pathway genetic variants as biomarkers of treatment outcome with bevacizumab: an analysis of data from the AViTA and AVOREN randomized trials. Lancet Oncol 13: 724–733

    CAS  PubMed  Google Scholar 

  69. Beuselinck B, Karadimou A, Lambrechts D, et al. (2013) Singlenucleotide polymorphisms associated with outcome in metastatic renal cell carcinoma treated with sunitinib. Br J Cancer 108: 887–900

    PubMed Central  CAS  PubMed  Google Scholar 

  70. De Haas S, Delmar P, Bansal AT, et al. (2014) Genetic variability of VEGF pathway genes in six randomized phase III trials assessing the addition of bevacizumab to standard therapy. Angiogenesis 17: 909–20

    PubMed  Google Scholar 

  71. Buffa FM, Harris AL, West CM, et al. (2010) Large metaanalysis of multiple cancers reveals a common, compact and highly prognostic hypoxia metagene. Br J Cancer 102: 428–35

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Mazzone M, Dettori D, Leite de Oliveira R, et al. (2009) Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 136: 839–51

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Jain RK (2014) Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell 26: 605–22

    CAS  PubMed  Google Scholar 

  74. Batchelor TT, Gerstner ER, Emblem KE, et al. (2013) Improved tumor oxygenation and survival in glioblastoma patients who show increased blood perfusion after cediranib and chemoradiation. Proc Natl Acad Sci USA 10: 19059–64

    Google Scholar 

  75. Chauhan VP, Martin JD, Liu H, et al. (2013) Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels. Nat Commun 4: 2516

    PubMed Central  PubMed  Google Scholar 

  76. Keizman D, Huang P, Eisenberger MA, et al. (2011) Angiotensin system inhibitors and outcome of sunitinib treatment in patients with metastatic renal cell carcinoma: a retrospective examination. Eur J Cancer 47: 1955–61

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Spranger S, Spaapen RM, Zha Y, et al. (2013) Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci Transl Med 5: 200

    Google Scholar 

  78. Wolchok JD, Kluger H, Callahan MK, et al. (2013) Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 369: 122–33

    CAS  PubMed  Google Scholar 

  79. Fuertes MB, Kacha AK, Kline J, et al. (2011) Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8{alpha}+ dendritic cells. J Exp Med 208: 2005–16

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Corrales L, Glickman LH, McWhirter SM, et al. (2015) Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep 11: 1018–30

    CAS  PubMed  Google Scholar 

  81. Cha E, Klinger M, Hou Y, et al. (2014) Improved survival with T cell clonotype stability after anti-CTLA-4 treatment in cancer patients. Sci Transl Med 6: 238–70

    Google Scholar 

  82. Tran E, Turcotte S, Gros A, et al. (2014) Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 344: 641–5

    CAS  PubMed  Google Scholar 

  83. Frederick DT, Piris A, Cogdill AP, et al. (2013) BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin Cancer Res 19: 1225–31

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Lee DD, Seung HS (1999) Learning the parts of objects by nonnegative matrix factorization. Nature 401: 788–91

    CAS  PubMed  Google Scholar 

  85. Shankaran V, Ikeda H, Bruce AT, et al. (2001) IFN-gamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410: 1107–11

    CAS  PubMed  Google Scholar 

  86. Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331: 1565–70

    CAS  PubMed  Google Scholar 

  87. Gubin MM, Zhang X, Schuster H, et al. (2014) Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515: 577–81

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Leder A, Pattengale PK, Kuo A, et al. (1986) Consequences of widespread deregulation of the c-myc gene in transgenic mice: multiple neoplasms and normal development. Cell 45: 485–95

    CAS  PubMed  Google Scholar 

  89. Donehower LA, Harvey M, Slagle BL, et al. (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356: 215–21

    CAS  PubMed  Google Scholar 

  90. Chin L, Tam A, Pomerantz J, et al. (1999) Essential role for oncogenic Ras in tumour maintenance. Nature 400: 468–72

    CAS  PubMed  Google Scholar 

  91. Jinek M, Chylinski K, Fonfara I, et al. (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816–21

    CAS  PubMed  Google Scholar 

  92. DeNicola GM, Karreth FA, Humpton TJ, et al. (2011) Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475: 106–9

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Lidgard GP, Domanico MJ, Bruinsma JJ, et al. (2013) Clinical Performance of an Automated Stool DNA Assay for Detection of Colorectal Neoplasia. Clinical Gastroenterology Hepatology 11: 1313–8

    CAS  PubMed  Google Scholar 

  94. Imperiale TF, Ransohoff DF, Itzkowitz SH, et al. (2014) Multitarget stool DNA testing for colorectal-cancer screening. N Engl J Med 370: 1287–97

    CAS  PubMed  Google Scholar 

  95. Chan AT, Ogino S, Fuchs CS (2007) Aspirin and the risk of colorectal cancer in relation to the expression of COX-2. N Engl J Med 356: 2131–42

    CAS  PubMed  Google Scholar 

  96. Fink SP, Yamauchi M, Nishihara R, et al. (2014) Aspirin and the risk of colorectal cancer in relation to the expression of 15-hydroxyprostaglandin dehydrogenase (HPGD). Sci Transl Med 6: 233

    Google Scholar 

  97. Nan H, Hutter CM, Lin Y, et al. (2015) Association of aspirin and NSAID use with risk of colorectal cancer according to genetic variants. JAMA 313: 1133–42

    CAS  PubMed  Google Scholar 

  98. Muñoz N, Bosch FX, Castellsagué X, et al. (2004) Against which human papillomavirus types shall we vaccinate and screen? The International Perspective. Int J Cancer 111: 278–85

    PubMed  Google Scholar 

  99. Ronco G, Dillner J, Elfström KM, et al. (2014) Efficacy of HPV-based screening for prevention of invasive cervical cancer: Follow-up of four European randomised controlled trials. Lancet 383: 524–32

    PubMed  Google Scholar 

  100. Ali H, Donovan B, Wand H, et al. (2013) Genital Warts in Young Australians Five Years into National Human Papillomavirus Vaccination Programme: National Surveillance Data. BMJ 346: 2032

    Google Scholar 

  101. Day PM, Kines RC, Thompson CD, et al. (2010) In vivo mechanisms of vaccine-induced protection against HPV infection. Cell Host Microbe 8: 260–70

    PubMed Central  CAS  PubMed  Google Scholar 

  102. Kreimer AR, Rodriguez AC, Hildesheim A, et al. (2011) Proof-of-principle evaluation of the efficacy of fewer than three doses of a bivalent HPV16/18 vaccine. J Natl Cancer Inst 103: 1444–51

    PubMed Central  CAS  PubMed  Google Scholar 

  103. Vambutas A, DeVoti J, Nouri M, et al. (2005) Therapeutic vaccination with papillomavirus E6 and E7 long peptides results in the control of both established virus-induced lesions and latently infected sites in a pre-clinical cottontail rabbit papillomavirus model. Vaccine 23: 5271–80

    CAS  PubMed  Google Scholar 

  104. Mittendorf EA, Clifton GT, Holmes JP, et al. (2014) Final report of the phase I/II clinical trial of the E75 (nelipepimut-S) vaccine with booster inoculations to prevent disease recurrence in highrisk breast cancer patients. Ann Oncol 25: 1735–42

    CAS  PubMed  Google Scholar 

  105. Kimura T, McKolanis JR, Dzubinski LA (2013) MUC1 Vaccine for individuals with advanced adenoma of the colon: a cancer immunoprevention feasibility study. Cancer Prev Res (Phila) 6: 18–26

    CAS  Google Scholar 

  106. Nagle CM, Marquart L, Bain CJ, et al. (2013) Impact of weight change and weight cycling on risk of different subtypes of endometrial cancer. Eur J Cancer 49: 2717–26

    CAS  PubMed  Google Scholar 

  107. Yang TY, Cairns BJ, Allen N, et al. (2012) Postmenopausal endometrial cancer risk and body size in early life and middle age: Prospective Cohort Study. Br J Cancer 107: 169–75

    PubMed Central  CAS  PubMed  Google Scholar 

  108. Aune D, Navarro-Rosenblatt DA, Chan DS, et al. (2015) Anthropometric factors and endometrial cancer risk: a systematic review and dose-response meta-analysis of prospective studies. Ann Oncol Mar 19. pii:mdv142 [Epub ahead of print]

    Google Scholar 

  109. Patz EF Jr, Pinsky P, Gatsonis C, et al. (2014) Overdiagnosis in low-dose computed tomography screening for lung cancer. JAMA Intern Med 174: 269–74

    PubMed Central  PubMed  Google Scholar 

  110. Tammemägi MC, Church TR, Hocking WG, et al. (2014) Evaluation of the lung cancer risks at which to screen ever- and never-smokers: screening rules applied to the PLCO and NLST cohorts. PLoS Med 11: 1001764

    Google Scholar 

  111. Tammemagi MC, Mayo JR, Lam S (2013) Cancer in pulmonary nodules detected on first screening CT. N Engl J Med 369: 2060–1

    CAS  PubMed  Google Scholar 

  112. Forsberg LA, Rasi C, Malmqvist N, et al. (2014) Mosaic loss of chromosome y in peripheral blood is associated with shorter survival and higher risk of cancer. Nat Genet 46: 624–8

    CAS  PubMed  Google Scholar 

  113. Dumanski JP, Rasi C, Lönn M, et al. (2015) Mutagenesis. Smoking is associated with mosaic loss of chromosome Y. Science 347: 81–3

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. G. Soares, J. Michels, J. Hadoux, A. Bellesoeur, C. Tlemsani, M.-A. Benderra or J.-P. Lotz.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soares, D.G., Michels, J., Hadoux, J. et al. Congrès de l’association américaine de recherche contre le cancer — AACR 2015. Oncologie 17, 277–298 (2015). https://doi.org/10.1007/s10269-015-2535-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10269-015-2535-y

Mots clés

Keywords

Navigation