Skip to main content
Log in

Baisse du citrate dans la cellule tumorale : une jauge à remettre à niveau ?

The decrease of citrate in tumor cells: a gauge to upgrade?

  • Mise au Point / Update
  • Published:
Oncologie

Résumé

Les tumeurs cancéreuses se comportent comme des parasites métaboliques qui puisent dans les réserves de l’hôte pour alimenter leurs biosynthèses, tandis qu’elles sécrètent des déchets (NO, polyamines, ammoniac, lactate…) qui favorisent la croissance tumorale et un microenvironnement acide aidant à l’envahissement et à la prolifération. Dans le métabolisme de la cellule cancéreuse, le citrate joue un rôle majeur, étant à la fois la jauge de l’énergie cellulaire (avec l’ATP), le donneur d’acétyle pour la synthèse des acides gras et/ou l’acétylation des protéines. Par conséquent, son taux cytosolique est abaissé, ce qui a été confirmé dans des biopsies de cancer de la prostate. Les stratégies visant à remonter le taux de citrate dans les cellules cancéreuses pourraient être pertinentes comme nous l’avons montré au laboratoire.

Abstract

Cancer tumors behave as metabolic parasites that draw on reserves of the host to feed their biosynthesis, and they secrete waste products (NO, polyamines, ammoniac, lactate, etc.) that promote tumor growth and an acidic microenvironment favoring invasion and proliferation. In the metabolism of cancer cells, citrate plays a major role, being both the gauge of cellular energy (with ATP), and the acetyl donor for the synthesis of fatty acids and/or acetylation of proteins. Therefore, the rate of citrate should be very low in cancer cells, a hypothesis recently confirmed in prostatic cancer biopsies. Strategies to restore a normal rate of citrate in cancer cells could be promising as we have shown in our laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Icard P, Lincet H (2012) A global view of the biochemical pathways involved in the regulation of the metabolism of cancer cells. Biochim Biophys 1826: 423–33

    CAS  Google Scholar 

  2. Icard P, Lincet H (2013) The cancer tumor: a metabolic parasite? Bull Cancer 100: 427–33

    CAS  PubMed  Google Scholar 

  3. Luo W, Semenza GL (2012) Emerging roles of PKM2 in cell metabolism and cancer progression. Trends Endocrinol Metab 23: 560–6

    Article  PubMed Central  PubMed  Google Scholar 

  4. Icard P, Poulain L, Lincet H (2012) Understanding the central role of citrate in the metabolism of cancer cells. Biochim Biophys Acta 1825: 111–6

    CAS  PubMed  Google Scholar 

  5. Warburg O (1956) On the origin of cancer cells. Science 123: 309–14

    Article  CAS  PubMed  Google Scholar 

  6. Witkiewicz AK, Whitaker-Menezes D, Dasgupta A, et al. (2012) Using the “reverse Warburg effect” to identify high-risk breast cancer patients: stromal MCT4 predicts poor clinical outcome in triple-negative breast cancers. Cell Cycle 11: 1108–17

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Porporato PE, Dhup S, Dadhich RK, et al. (2011) Anticancer targets in the glycolytic metabolism of tumors: a comprehensive review. Front Pharmacol 2: doi

  8. Bertout JA, Patel SA, Simon MC (2008) The impact of O2 availability on human cancer. Nat Rev Cancer 8: 967–75

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Israel M (2004) Four hidden metamorphoses: a remark on blood, muscle, mental diseases and cancer. John Libbey Eurotext

    Google Scholar 

  10. Ratcliffe PJ (2013) Oxygen sensing and hypoxia signalling pathways in animals: the implications of physiology for cancer. J Physiol 591: 2027–42

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Leist M, Single B, Castoldi AF (1997) Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med 185: 1481–6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Mathew R, White E (2011) Autophagy in tumorigenesis and energy metabolism: friend by day, foe by night. Curr Opin Genet Dev 21: 113–9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Loewith R, Hall MN (2011) Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 189: 1177–201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Hue L, Maisin L, Rider MH (1988) Palmitate inhibits liver glycolysis. Involvement of fructose 2,6–bisphosphate in the glucose/ fatty acid cycle. Biochem J 251: 541–5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Wellen KE, Hatzivassiliou G, Sachdeva UM, et al. (2009) ATPcitrate lyase links cellular metabolism to histone acetylation. Science 324: 1076–80

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Cai L, Sutter BM, Li B, Tu BP (2011) Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol Cell 42: 426–37

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Yun J, Rago C, Cheong I, et al. (2009) Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 325: 1555–9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Kruspig B, Nilchian A, Orrenius S, et al. (2012) Citrate kills tumor cells through activation of apical caspases. Cell Mol Life Sci 69: 4229–37

    Article  CAS  PubMed  Google Scholar 

  19. Lu Y, Zhang XD, Lan J, et al. (2011) Citrate induces apoptotic cell death: a promising way for treating gastric carcinoma? Anticancer Res 31: 797–805

    CAS  PubMed  Google Scholar 

  20. Zhang X, Varin E, Allouche S, et al. (2009) Effect of citrate on malignant pleural mesothelioma cells: a synergistic effect with cisplatin. Anticancer Res 29: 1249–54

    CAS  PubMed  Google Scholar 

  21. Giskeodegard GF, Bertilsson H, Selnaes KM, et al. (2013) Spermine and citrate as metabolic biomarkers for assessing prostate cancer aggressiveness. PLoS One 8: e62375

  22. Lincet H, Kafara P, Giffard F, et al. (2013) Inhibition of Mcl-1 expression by citrate enhances the effect of Bcl-xL inhibitors on human ovarian carcinoma cells. J Ovarian Res 6: 72

    Article  PubMed Central  PubMed  Google Scholar 

  23. Schwartz L, Guais A, Israel M, et al. (2013) Tumor regression with a combination of drugs interfering with the tumor metabolism: efficacy of hydroxycitrate, lipoic acid and capsaicin. Invest New Drugs 31: 256–64

    Article  CAS  PubMed  Google Scholar 

  24. Hanai J, Doro N, Sasaki AT, et al. (2012) Inhibition of lung cancer growth: ATP-citrate lyase knockdown and statin treatment leads to dual blockade of mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K)/AKT pathways. J Cell Physiol 227: 1709–20

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Berendsen S, Broekman M, Seute T, et al. (2012) Valproic acid for the treatment of malignant gliomas: review of the preclinical rationale and published clinical results. Expert Opin Investig Drugs 21: 1391–415

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Icard.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Icard, P., Vallantin, T., Kafara, P. et al. Baisse du citrate dans la cellule tumorale : une jauge à remettre à niveau ?. Oncologie 17, 315–320 (2015). https://doi.org/10.1007/s10269-015-2509-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10269-015-2509-4

Mots clés

Keywords

Navigation