Skip to main content
Log in

Biologie moléculaire des sarcomes des tissus mous

Molecular biology of soft tissue sarcoma

  • Published:
Oncologie

Résumé

Les sarcomes des tissus mous (STM) regroupent des tumeurs de différentes origines histologiques, ayant une agressivité variable et dont le diagnostic, déterminant sur l’efficacité de la prise en charge du patient, reste parfois délicat à établir. Hétérogènes également sur le plan génétique, ces tumeurs peuvent être regroupées selon la compréhension que nous avons de leur génétique: environ 40 % des sarcomes sont caractérisés par une altération spécifique, translocation ou mutation. Les 60 % restant ne présentent pas de remaniements spécifiques. Dans ce groupe nous pouvons distinguer d’une part, environ 20 % des sarcomes indifférenciés qui présentent une génétique simple très similaire à celle observée dans les liposarcomes bien différenciés; et, d’autre part, les leiomyosarcomes, rhabdomyosarcomes pléomorphes, liposarcomes pléomorphes et les sarcomes pléomorphes indifférenciés ou histocytofibromes malins (MFH) notamment, qui sont génétiquement très instables et pour lesquels aucun remaniement spécifique n’a pu être mis en évidence. L’ensemble de ces caractérisations génétiques font maintenant partie, grâce au développement des technologies, du diagnostic moléculaire des sarcomes des tissus mous.

Abstract

Soft tissue sarcoma includes tumours of various histological origins, with variable aggressiveness, and whose diagnosis, which determines treatment effectiveness, sometimes remains difficult to establish. Heterogeneous on the genetic level, these tumours can be classified according to our understanding of their molecular genetics: approximately 40% of sarcomas are characterized by a specific translocation or mutation. The remaining 60% have no specific modifications. In this group, approximately 20% are undifferentiated sarcomas with very simple genetics similar to differentiated lpiposarcomas, while leiomyosarcomas, pleomorphic rhabdomyosarcomas, pleomorphic liposarcomas, undifferentiated pleomorphic sarcomas, and, in particular, malignant fibrous histocytomas (MFH) are genetically very unstable, no specific rearrangement having been identified. Thanks to a number of technological advances, all of these genetic characteristics play a role in the molecular diagnosis of soft tissue sarcoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Antonescu CR (2006) The role of genetic testing in soft tissue sarcoma. Histopathology 48: 13–21

    Article  PubMed  CAS  Google Scholar 

  2. Chibon F, Mairal A, Freneaux P, et al. (2000) The RB1 gene is the target of chromosome 13 deletions in malignant fibrous histiocytoma. Cancer Res 60: 6339–6345

    PubMed  CAS  Google Scholar 

  3. Chibon F, Mariani O, Derre J, et al. (2002) A subgroup of malignant fibrous histocytomas is associated with genetic changes similar to those of well-differentiated liposarcomas. Cancer Genet Cytogenet 139: 24–29

    Article  PubMed  CAS  Google Scholar 

  4. Chibon F, Mariani O, Mairal A, et al. (2003) The use of clustering software for the classification of comparative genomic hybridization data, an analysis of 109 malignant fibrous histiocytomas. Cancer Genet Cytogenet 141: 75–78

    Article  PubMed  CAS  Google Scholar 

  5. Chibon F, Mariani O, Derre J, et al. (2004) ASK1 (MAP3K5) as a potential therapeutic target in malignant fibrous histocytomas with 12q14-q15 and 6q23 amplifications. Genes Chromosomes Cancer 40: 32–37

    Article  PubMed  CAS  Google Scholar 

  6. Coindre JM, Mariani O, Chibon F, et al. (2003) Most malignant fibrous histocytomas developed in retroperitoneum are dedifferentiated liposarcomas: a review of 25 cases initially diagnosed as malignant fibrous histocytoma. Mod Pathol 16: 256–262

    Article  PubMed  Google Scholar 

  7. Crozat A, Aman P, Mandahl N, et al. (1993) Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature 363: 640–644

    Article  PubMed  CAS  Google Scholar 

  8. Cummins JM, Velculescu VE (2006) Implication of micro-RNA profiling for cancer diagnosis. Oncogene 25: 6220–6227

    Article  PubMed  CAS  Google Scholar 

  9. Delattre O, Zucman J, Melot T, et al. (1994) The Ewing family of tumors-a subgroup of small-round-cell tumors defined by specific chimeric transcripts. N Engl J Med 331: 294–299

    Article  PubMed  CAS  Google Scholar 

  10. Derre J, Lagace R, Nicolas A, et al. (2001) Leiomyosarcomas and most malignant fibrous histiocytomas share very similar comparative genomic hybridization imbalances: an analysis of a series of 27 leiomyosarcomas. Lab Invest 81: 211–215

    PubMed  CAS  Google Scholar 

  11. Galili N, Davis RJ, Fredericks WJ, et al. (1993) Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nat Genet 5: 230–235

    Article  PubMed  CAS  Google Scholar 

  12. Heidenblad M, Hallor KH, Staaf, et al. (2006) Genomic profiling of bone and soft tissue tumors with supernumerary ring chromosomes using tiling resolution bacterial artificial chromosome microarrays. Oncogene 25: 7106–7116

    Article  PubMed  CAS  Google Scholar 

  13. Heinrich MC, Corless CL, Demetri GD, et al. (2003) Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 21: 4342–4349

    Article  PubMed  CAS  Google Scholar 

  14. Hirota S, Isozaki K, Moriyama Y, et al. (1998) Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 279: 577–580

    Article  PubMed  CAS  Google Scholar 

  15. Idbaih A, Coindre JM, Derre J, et al. (2005) Myxoid malignant fibrous histiocytoma and pleomorphic liposarcoma share very similar genomic imbalances. Lab Invest 85: 176–181

    Article  PubMed  CAS  Google Scholar 

  16. Joensuu H, Roberts PJ, Sarlomo-Rikala, et al. (2001) Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med 344: 1052–1056

    Article  PubMed  CAS  Google Scholar 

  17. Kallioniemi A, Kallioniemi OP, Sudar D, et al. (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258: 818–821

    Article  PubMed  CAS  Google Scholar 

  18. Knezevich SR, Garnett MJ, Pysher TJ, et al. (1998) ETV6-NTRK3 gene fusions and trisomy 11 establish a histogenetic link between mesoblastic nephroma and congenital fibrosarcoma. Cancer Res 58: 5046–5048

    PubMed  CAS  Google Scholar 

  19. Larramendy ML, Kaur S, Svarvar C, et al. (2006) Gene copy number profiling of soft-tissue leiomyosarcomas by array-comparative genomic hybridization. Cancer Genet Cytogenet 169: 94–101

    Article  PubMed  CAS  Google Scholar 

  20. Mairal A, Terrier P, Chibon F, et al. (1999) Loss of chromosome 13 is the most frequent genomic imbalance in malignant fibrous histiocytomas. A comparative genomic hybridization analysis of a series of 30 cases. Cancer Genet Cytogenet 111: 134–138

    Article  PubMed  CAS  Google Scholar 

  21. Mertens F, Fletcher CD, Dal CP, et al. (1998) Cytogenetic analysis of 46 pleomorphic soft tissue sarcomas and correlation with morphologic and clinical features: a report of the CHAMP Study Group. Chromosomes and MorPhology. Genes Chromosomes Cancer 22: 16–25

    Article  PubMed  CAS  Google Scholar 

  22. O’Brien KP, Seroussi E, Dal CP, et al. (1998) Various regions within the alphahelical domain of the COL1A1 gene are fused to the second exon of the PDGFB gene in dermatofibrosarcomas and giant-cell fibroblastomas. Genes Chromosomes Cancer 23: 187–193

    Article  PubMed  CAS  Google Scholar 

  23. Parente F, Grosgeorge J, Coindre JM, et al. (1999) Comparative genomic hybridization reveals novel chromosome deletions in 90 primary soft tissue tumors. Cancer Genet Cytogenet 115: 89–95

    Article  PubMed  CAS  Google Scholar 

  24. Pedeutour F, Suijkerbuijk RF, Forus A, et al. (1994) Complex composition and co-amplification of SAS and MDM2 in ring and giant rod marker chromosomes in well-differentiated liposarcoma. Genes Chromosomes Cancer 10: 85–94

    Article  PubMed  CAS  Google Scholar 

  25. Pedeutour F, Simon MP, Minoletti F, et al. (1996) Translocation, t(17;22)(q22;q13), in dermatofibrosarcoma protuberans: a new tumor-associated chromosome rearrangement. Cytogenet Cell Genet 72: 171–174

    PubMed  CAS  Google Scholar 

  26. Pedeutour F, Forus A, Coindre JM, et al. (1999) Structure of the supernumerary ring and giant rod chromosomes in adipose tissue tumors. Genes Chromosomes Cancer 24: 30–41

    Article  PubMed  CAS  Google Scholar 

  27. Rabbitts TH, Forster A, Larson R, et al. (1993) Fusion of the dominant negative transcription regulator CHOP with a novel gene FUS by translocation t(12;16) in malignant liposarcoma. Nat Genet 4: 175–180

    Article  PubMed  CAS  Google Scholar 

  28. Shio S, Takashi I, Keisuke I, et al. (2006) The value of MDM2 and CDK4 amplification levels using real-time polymerase chain reaction for the differential diagnosis of liposarcomas and their histologic mimickers. Hum Pathol 37: 1123–1129

    Article  Google Scholar 

  29. Thaete C, Brett D, Monaghan P, et al. (1999) Functional domains of the SYT and SYT-SSX synovial sarcoma translocation proteins and co-localization with the SNF protein BRM in the nucleus. Hum Mol Genet 8: 585–591

    Article  PubMed  CAS  Google Scholar 

  30. Turc-Carel C, Limon J, Dal CP, et al. (1986) Cytogenetic studies of adipose tissue tumors. II. Recurrent reciprocal translocation t(12;16)(q13;p11) in myxoid liposarcomas. Cancer Genet Cytogenet 23: 291–299

    Article  PubMed  CAS  Google Scholar 

  31. Van Oosterom AT, Judson I, Verweij J, et al. (2001) Safety and efficacy of imatinib (STI571) in metastatic gastrointestinal stromal tumours: a phase I study. Lancet 358: 1421–1423

    Article  PubMed  Google Scholar 

  32. Versteege I, Sevenet N, Lange J, et al. (1998) Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394: 203–206

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Chibon.

About this article

Cite this article

Chibon, F., Aurias, A. Biologie moléculaire des sarcomes des tissus mous. Oncologie 9, 88–96 (2007). https://doi.org/10.1007/s10269-006-0559-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10269-006-0559-z

Mots clés

Keywords

Navigation