Skip to main content

Advertisement

Log in

Properties of indirect composites reinforced with monomer-impregnated glass fiber

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

Sufficient flexural strength is required for long-term clinical use of fixed partial dentures made with fiber-reinforced composite. The flexural strengths of indirect composite materials reinforced with a monomer-preimpregnated glass fiber material were determined to evaluate the compatibility of the composites to glass fiber material. Four types (microhybrid, nanohybrid, microfilled, and minifilled) of indirect composites and a unidirectional long glass fiber material were selected for investigation. The composites were placed on a fiber plate and polymerized in accordance with the respective manufacturer’s instructions. Rectangular bar fiber–composite specimens were machined and the flexural strength was calculated. The flexural strength of each indirect composite was also measured. The microfilled composite with the lowest filler content (70 wt%) exhibited the highest increase ratio using the fiber, although its strength without fiber reinforcement was the lowest (62.1 MPa). The fiber–microhybrid specimen demonstrated the highest mean strength (355.9 MPa), although the filler content of the microhybrid composite was comparatively low (73 wt%). The type of composite material should be considered for the selection of an optimal fiber–composite combination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Freilich MA, Karmaker AC, Burstone CJ, Goldberg AJ. Development and clinical applications of a light-polymerized fiber-reinforced composite. J Prosthet Dent. 1998;80:311–8.

    Article  PubMed  Google Scholar 

  2. Vallittu PK, Sevelius C. Resin-bonded, glass fiber-reinforced composite fixed partial dentures. J Prosthet Dent. 2000;84:413–8.

    Article  PubMed  Google Scholar 

  3. Vallittu PK. Case report: a glass fiber reinforced composite resin bonded fixed partial denture. Eur J Prosthodont Restor Dent. 2001;9:35–9.

    PubMed  Google Scholar 

  4. Göhring TN, Schmidlin PR, Lutz F. Two-year clinical and SEM evaluation of glass-fiber-reinforced inlay fixed partial dentures. Am J Dent. 2002;15:35–40.

    PubMed  Google Scholar 

  5. Vallittu PK. Survival rates of resin-bonded, glass fiber-reinforced composite fixed partial dentures with a mean follow-up of 42 months: a pilot study. J Prosthet Dent. 2004;91:241–6.

    Article  PubMed  Google Scholar 

  6. Cenci MS, Rodolpho PA, Pereira-Cenci T, Del Bel Cury AA, Demarco FF. Fixed partial dentures in an up to 8-year follow-up. J Appl Oral Sci. 2010;18:364–71.

    Article  PubMed  Google Scholar 

  7. Soares CJ, Barbosa LM, Santana FR, Soares PB, Mota AS, Silva GR. Fracture strength of composite fixed partial denture using bovine teeth as a substitute for human teeth with or without fiber-reinforcement. Braz Dent J. 2010;21:235–40.

    Article  PubMed  Google Scholar 

  8. Aida N, Shinya A, Yokoyama D, Lassila LV, Gomi H, Vallittu PK, Shinya A. Three-dimensional finite element analysis of posterior fiber-reinforced composite fixed partial denture Part 2: influence of fiber reinforcement on mesial and distal connectors. Dent Mater J. 2011;30:29–37.

    Article  PubMed  Google Scholar 

  9. Altieri JV, Burstone CJ, Goldberg AJ, Patel AP. Longitudinal clinical evaluation of fiber-reinforced fixed partial dentures: a pilot study. J Prosthet Dent. 1994;71:16–22.

    Article  PubMed  Google Scholar 

  10. Jokstad A, Gökçe M, Hjortsjö C. A systematic review of the scientific documentation of fixed partial dentures made from fiber-reinforced polymer to replace missing teeth. Int J Prosthodont. 2005;18:489–96.

    PubMed  Google Scholar 

  11. Behr M, Rosentritt M, Taubenhansl P, Kolbeck C, Handel G. Fracture resistance of fiber-reinforced composite restorations with different framework design. Acta Odontol Scand. 2005;63:153–7.

    Article  PubMed  Google Scholar 

  12. Ootaki M, Shin-ya A, Gomi H, Shin-ya A, Nakasone Y. Optimum design for fixed partial dentures made of hybrid resin with glass fiber reinforcement by finite element analysis: effect of vertical reinforced thickness on fiber frame. Dent Mater J. 2007;26:80–289.

    Article  Google Scholar 

  13. Waki T, Nakamura T, Nakamura T, Kinuta S, Wakabayashi K, Yatani H. Fracture resistance of inlay-retained fixed partial dentures reinforced with fiber-reinforced composite. Dent Mater J. 2006;25:1–6.

    Article  PubMed  Google Scholar 

  14. Xie Q, Lassila LV, Vallittu PK. Comparison of load-bearing capacity of direct resin-bonded fiber-reinforced composite FPDs with four framework designs. J Dent. 2007;35:578–82.

    Article  PubMed  Google Scholar 

  15. Ozcan M, Breuklander MH, Vallittu PK. The effect of box preparation on the strength of glass fiber-reinforced composite inlay-retained fixed partial dentures. J Prosthet Dent. 2005;93:337–45.

    Article  PubMed  Google Scholar 

  16. Garoushi S, Vallittu PK, Lassila LV. Use of short-reinforced composite with semi-interpenetrating polymer network matrix in fixed partial dentures. J Dent. 2007;35:403–8.

    Article  PubMed  Google Scholar 

  17. Tezvergil A, Lassila LV, Yli-Urpo A, Vallittu PK. Repair bond strength of restorative resin composite applied to fiber-reinforced composite substrate. Acta Odontol Scand. 2004;62:51–60.

    Article  PubMed  Google Scholar 

  18. Waki T, Nakamura T, Wakabayashi K, Mutobe Y, Yatani H. Adhesive strength between fiber-reinforced composites and veneering composites and fracture load of combinations of these materials. Int J Prosthodont. 2004;17:364–8.

    PubMed  Google Scholar 

  19. Pfeiffer P, Grube L. Effect of pontic height on the fracture strength of reinforced interim fixed partial dentures. Dent Mater. 2006;22:1093–7.

    Article  PubMed  Google Scholar 

  20. Bae JM, Kim KN, Hattori M, Hasegawa K, Yoshinari M, Kawada E, Oda Y. The flexural properties of fiber-reinforced composite with light-polymerized polymer matrix. Int J Prosthodont. 2001;14:33–9.

    PubMed  Google Scholar 

  21. Ellakwa AE, Shortall AC, Marquis PM. Influence of fiber type and wetting agent on the flexural properties of an indirect fiber reinforced composite. J Prosthet Dent. 2002;88:485–90.

    Article  PubMed  Google Scholar 

  22. Nakamura T, Ohyama T, Waki T, Kinuta S, Wakabayashi K, Takano N, Yatani H. Finite element analysis of fiber-reinforced fixed partial dentures. Dent Mater J. 2005;24:275–9.

    Article  PubMed  Google Scholar 

  23. Segerström S, Meriç G, Knarvang T, Ruyter IE. Evaluation of two matrix materials intended for fiber-reinforced polymers. Eur J Oral Sci. 2005;113:422–8.

    Article  PubMed  Google Scholar 

  24. Karbhari VM, Strassler H. Effect of fiber architecture on flexural characteristics and fracture of fiber-reinforced dental composites. Dent Mater. 2007;23:960–8.

    Article  PubMed  Google Scholar 

  25. Bayne SC, Heymann HO, Swift EJ. Update on dental composite restorations. J Am Dent Assoc. 1994;125:687–701.

    PubMed  Google Scholar 

  26. Izumida A, Tomoda K, Kimura K, Komatsu M, Okuno O. Rheological study of hard resin for crown and bridge. J Jpn Prosthodont Soc. 2006;50:396–404.

    Article  Google Scholar 

  27. Mitobe C, Shin-ya A, Gomi H, Shin-ya A. Evaluation of fiber-reinforced composite resins using JIS and ISO bending test methods. J Dent Mater. 2006;25:281–9.

    Google Scholar 

  28. International Organization for Standardization. Dentistry—polymer-based crown and bridge materials. ISO 10477 1992; 1992(E).

  29. Ide T, Yanagida H, Hisamatsu N, Tanoue N, Murata H, Matsumura H. Shear bond strength of four indirect composites to a monomer-impregnated glass fiber material. Adhes Dent. 2008;26:112–7.

    Google Scholar 

  30. Rodrigues SA Jr, Scherrer SS, Ferracane JL, Della Bona A. Flexural strength and Weibull analysis of a microhybrid and a nanofill composite evaluated by 3- and 4-point bending tests. Dent Mater. 2008;24:426–31.

    Article  PubMed  Google Scholar 

  31. Tanimoto Y, Kitagawa T, Aida M, Nishiyama N. Experimental and computational approach for evaluating the mechanical characteristics of dental composite resins with various filler sizes. Acta Biomater. 2006;2:633–9.

    Article  PubMed  Google Scholar 

  32. Tanoue N, Matsumura H, Atsuta M. Properties of four composite veneering materials polymerized with different laboratory photo-curing units. J Oral Rehabil. 1998;25:358–64.

    Article  PubMed  Google Scholar 

  33. Tanoue N, Shimoe S, Atsuta M, Matsumura H. Application of a preliminary light-curing unit for enhanced bonding between a gold alloy and veneering materials. Am J Dent. 2005;18:82–6.

    PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by Grants-in-Aid for Scientific Research B (18390525), for Scientific C (20592302), and for Scientific C (23592858) from the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naomi Tanoue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanoue, N., Sawase, T., Matsumura, H. et al. Properties of indirect composites reinforced with monomer-impregnated glass fiber. Odontology 100, 192–198 (2012). https://doi.org/10.1007/s10266-011-0039-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-011-0039-9

Keywords

Navigation