Skip to main content
Log in

Ectopic overexpression of a novel Glycine soja stress-induced plasma membrane intrinsic protein increases sensitivity to salt and dehydration in transgenic Arabidopsis thaliana plants

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Plasma membrane intrinsic proteins (PIPs) belong to the aquaporin family and facilitate water movement across plasma membranes. Existing data indicate that PIP genes are associated with the abilities of plants to tolerate certain stress conditions. A review of our Glycine soja expressed sequence tag (EST) dataset revealed that abiotic stress stimulated expression of a PIP, herein designated as GsPIP2;1 (GenBank_Accn: FJ825766). To understand the roles of this PIP in stress tolerance, we generated a coding sequence for GsPIP2;1 by in silico elongation and cloned the cDNA by 5′-RACE. Semiquantitative RT-PCR showed that GsPIP2;1 expression was stimulated in G. soja leaves by cold, salt, or dehydration stress, whereas the same stresses suppressed GsPIP2;1 expression in the roots. Transgenic Arabidopsis thaliana plants overexpressing GsPIP2;1 grew normally under unstressed and cold conditions, but exhibited depressed tolerance to salt and dehydration stresses. Moreover, greater changes in water potential were detected in the transgenic A. thaliana shoots, implying that GsPIP2;1 may negatively impact stress tolerance by regulating water potential. These results, deviating from those obtained in previous reports, provide new insights into the relationship between PIPs and abiotic stress tolerance in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AQP:

Aquaporin

CDS:

Coding sequence

EST:

Expressed sequence tag

GFP:

Green fluorescent protein

GsPIP21-OXP:

Arabidopsis plants overexpressing GsPIP21

MIP:

Major intrinsic protein

MS:

Murashige and Skoog basal salt mixture

P35S :

CaMV35S promoter

PEG:

Polyethylene glycol

PIP:

Plasma membrane intrinsic protein

RACE:

Rapid amplification of cDNA ends

TIP:

Tonoplast intrinsic protein

WT:

Wild type

References

  • Aharon R, Shahak Y, Wininger S, Bendov R, Kapulnik Y, Galili G (2003) Overexpression of a plasma membrane aquaporins in transgenic tobacco improves plant vigour under favourable growth conditions but not under drought or salt stress. Plant Cell 15:439–447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Anjali G, Ramasubbu S (2009) Genome-wide analysis of major intrinsic proteins in the tree plant Populus trichocarpa: characterization of XIP subfamily of aquaporins from evolutionary perspective. BMC Plant Biol 9:134

    Article  Google Scholar 

  • Baiges I, Schaffner AR, Affenzeller MJ, Mas A (2002) Plant aquaporins. Physiol Plant 115:175–182

    Article  CAS  PubMed  Google Scholar 

  • Barkla BJ, Vera-Estrella R, Pantoja O, Kirch H-H, Bohnert HJ (1999) Aquaporin localization-how valid are the TIP and PIP labels? Trends Plant Sci 4:86–88

    Article  PubMed  Google Scholar 

  • Boursiac Y, Chen S, Luu DT, Sorieul M, van den Dries N, Maurel C (2005) Early effects of salinity on water transport in arabidopsis roots. Molecular and cellular features of aquaporin expression. Plant Physiol 139:790–805

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen JX, Wang XF (2006) Manual of plant physiology experiments (published in Chinese). South China University of Technology Press, Guangzhou

    Google Scholar 

  • Danielson JAH, Johanson U (2008) Unexpected complexity of the aquaporin gene family in the moss Physcomitrella patens. BMC Plant Biol 8:45

    Article  PubMed Central  PubMed  Google Scholar 

  • Forrest KL, Bhave M (2007) Major intrinsic proteins (MIPs) in plants: a complex gene family with major impacts on plant phenotype. Funct Integr Genomics 7:263–289

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Wang ZY, Lin H, Cui WE, Chen J, Liu M, Chen ZL, Qu LJ, Gu H (2006) Expression and functional analysis of the rice plasma-membrane intrinsic protein gene family. Cell Res 16:277–286

    Article  CAS  PubMed  Google Scholar 

  • Jang JY, Lee SH, Rhee JY, Chung GC, Ahn SJ, Kang H (2007a) Transgenic Arabidopsis and tobacco plants overexpressing an aquaporin respond differently to various abiotic stresses. Plant Mol Biol 64:621–632

    Article  CAS  PubMed  Google Scholar 

  • Jang JY, Rhee JY, Kim DG, Chung GC, Lee JH, Kang H (2007b) Ectopic expression of a foreign aquaporin disrupts the natural expression patterns of endogenous aquaporin genes and alters plant responses to different stress conditions. Plant Cell Physiol 48:1331–1339

    Article  CAS  PubMed  Google Scholar 

  • Ji W, Li Y, Li J, Dai CH, Wang X, Bai X, Cai H, Yang L, Zhu YM (2006) Generation and analysis of expressed sequence tags from NaCl-treated Glycine soja. BMC Plant Biol 6:4

    Article  PubMed Central  PubMed  Google Scholar 

  • Kaldenhoff R, Ribas-Carbo M, Flexas Sans J, Lovisolo C, Heckwolf M, Uehlein N (2008) Aquaporins and plant water balance. Plant Cell Environ 31:658–666

    Article  CAS  PubMed  Google Scholar 

  • Li GW, Zhang MH, Cai WM, Sun WN, Su WA (2008) Characterization of OsPIP2;7, a water channel protein in rice. Plant Cell Physiol 49:1851–1858

    Article  CAS  PubMed  Google Scholar 

  • Maurel C (1997) Aquaporins and water permeability of plant membranes. Ann Rev Plant Physiol 48:399–429

    Article  CAS  Google Scholar 

  • Murata N, Los DA (1997) Membrane fluidity and temperature perception. Plant Physiol 115:875–879

    CAS  PubMed Central  PubMed  Google Scholar 

  • Quigley F, Rosenberg JM, Shachar-Hill Y, Bohnert HJ (2001) From genome to function: the Arabidopsis aquaporins. Genome Biol 3:research0001.1–0001.17

  • Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M (2005) Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol 46:1568–1577

    Article  CAS  PubMed  Google Scholar 

  • Secchi F, Lovisolo C, Schubert A (2007) Expression of OePIP2.1 aquaporin gene and water relations of Olea europaea twigs during drought stress and recovery. Ann Appl Biol 150:1–5

    Article  Google Scholar 

  • Siefritz F, Tyree MT, Lovisolo C, Schubert A, Kaldenhoff R (2002) PIP1 plasma membrane aquaporins in tobacco: from cellular effects to function in plants. Plant Cell 14:869–876

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Temmei Y, Uchida S, Hoshino D, Kanzawa N, Kuwahara M, Sasaki S, Tsuchiya T (2005) Water channel activities of Mimosa pudica plasma membrane intrinsic proteins are regulated by direct interaction and phosphorylation. FEBS Lett 579:4417–4422

    Article  CAS  PubMed  Google Scholar 

  • Tournaire-Roux C, Sutka M, Javot H, Gout E, Gerbeau P, Luu DT, Bligny R, Maurel C (2003) Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature 425:393–397

    Article  CAS  PubMed  Google Scholar 

  • Walz T, Hirai T, Murata K, Heymann JB, Mitsuoka K, Fujiyoshi Y, Smith BL, Agre P, Engel A (1997) The three-dimensional structure of aquaporin-1. Nature 387:624–627

    Article  CAS  PubMed  Google Scholar 

  • Weige D, Glazebrook J (2002) Arabidopsis: A laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Wudick MM, Luu DT, Maurel C (2009) A look inside: localization patterns and functions of intracellular plant aquaporins. New Phytol 184:289–302

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Wang Y, Jiang L, Xu Y, Wang Y, Lu D, Chen F (2007) Aquaporin JcPIP2 is involved in drought responses in Jatropha curcas. Acta Biochim Biophys Sin (Shanghai) 39:787–794

    Article  CAS  Google Scholar 

  • Zhang DY, Ali Z, Wang CB, Xu L, Yi JX, Xu ZL, Liu XQ, He XL, Huang YH, Khan IA, Trethowan RM, Ma HX (2013) Genome-wide sequence characterization and expression analysis of major intrinsic proteins in soybean (Glycine max L.). PLoS One 8:e56312

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This project was supported by the Modern Agricultural Industry Technology System of Sugar Beet (CARS-210101-06), the Science Foundation of Heilongjiang University for Young Scientists (QL201124), the General Program of the Education Department of Heilongjiang Province (12531488), the National Natural Science Foundation of China (30570990), the National Key Basic Research Special Funds of China (2003CCA03500), the Special Program of the National High Technology Research and Development Program of China (2007AA10Z193), the National Major Project for the Cultivation of Transgenic Crops (20082x08004), the Key Research Plan of Heilongjiang Province (GA06B103), and the Innovation Research Group of NEAU (CXT004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanming Zhu.

Additional information

The corresponding author is not a member of the Botanical Society of Japan. Subject area that is most relevant to the work(5) Physiology/Biochemistry/Molecular and Cellular Biology.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 288 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Cai, H., Li, Y. et al. Ectopic overexpression of a novel Glycine soja stress-induced plasma membrane intrinsic protein increases sensitivity to salt and dehydration in transgenic Arabidopsis thaliana plants. J Plant Res 128, 103–113 (2015). https://doi.org/10.1007/s10265-014-0674-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-014-0674-7

Keywords

Navigation