Skip to main content
Log in

A promoter analysis of MOTHER OF FT AND TFL1 1 (JcMFT1), a seed-preferential gene from the biofuel plant Jatropha curcas

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

MOTHER OF FT AND TFL1 (MFT)-like genes belong to the phosphatidylethanoamine-binding protein (PEBP) gene family in plants. In contrast to their homologs FLOWERING LOCUS T (FT)-like and TERMINAL FLOWER 1 (TFL1)-like genes, which are involved in the regulation of the flowering time pathway, MFT-like genes function mainly during seed development and germination. In this study, a full-length cDNA of the MFT-like gene JcMFT1 from the biodiesel plant Jatropha curcas (L.) was isolated and found to be highly expressed in seeds. The promoter of JcMFT1 was cloned and characterized in transgenic Arabidopsis. A histochemical β-glucuronidase (GUS) assay indicated that the JcMFT1 promoter was predominantly expressed in both embryos and endosperms of transgenic Arabidopsis seeds. Fluorometric GUS analysis revealed that the JcMFT1 promoter was highly active at the mid to late stages of seed development. After seed germination, the JcMFT1 promoter activity decreased gradually. In addition, both the JcMFT1 expression in germinating Jatropha embryos and its promoter activity in germinating Arabidopsis embryos were induced by abscisic acid (ABA), possibly due to two ABA-responsive elements, a G-box and an RY repeat, in the JcMFT1 promoter region. These results show that the JcMFT1 promoter is seed-preferential and can be used to control transgene expression in the seeds of Jatropha and other transgenic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdulla R, Chan ES, Ravindra P (2011) Biodiesel production from Jatropha curcas: a critical review. Crit Rev Biotechnol 31:53–64. doi:10.3109/07388551.2010.487185

    Article  CAS  PubMed  Google Scholar 

  • Abhilash PC, Srivastava P, Jamil S, Singh N (2011) Revisited Jatropha curcas as an oil plant of multiple benefits: critical research needs and prospects for the future. Environ Sci Pollut R 18:127–131

    Article  CAS  Google Scholar 

  • Achten WMJ, Nielsen LR, Aerts R, Lengkeek AG, Kjær ED, Trabucco A, Hansen JK, Maes WH, Graudal L, Akinnifesi FK (2010) Towards domestication of Jatropha curcas. Biofuels 1:91–107

    Article  CAS  Google Scholar 

  • Ahn JH, Miller D, Winter VJ, Banfield MJ, Lee JH, Yoo SY, Henz SR, Brady RL, Weigel D (2006) A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J 25:605–614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Albani D, Hammond-Kosack MC, Smith C, Conlan S, Colot V, Holdsworth M, Bevan MW (1997) The wheat transcriptional activator SPA: a seed-specific bZIP protein that recognizes the GCN4-like motif in the bifactorial endosperm box of prolamin genes. Plant Cell 9:171–184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Argollo Marques D, Siqueira W, Colombo C, Ferrari R (2013) Breeding and Biotechnology of Jatropha curcas. In: Bahadur B, Sujatha M, Carels N (eds) Jatropha, Challenges for a New Energy Crop. Volume 2, Genetic improvement and biotechnology. Springer New York, pp 457–478. doi:10.1007/978-1-4614-4915-7_23

  • Banfield MJ, Brady RL (2000) The structure of Antirrhinum centroradialis protein (CEN) suggests a role as a kinase regulator. J Mol Biol 297:1159–1170

    Article  CAS  PubMed  Google Scholar 

  • Banfield MJ, Barker JJ, Perry ACF, Brady RL (1998) Function from structure? The crystal structure of human phosphatidylethanolamine-binding protein suggests a role in membrane signal transduction. Structure 6:1245–1254

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Carmel-Goren L, Liu YS, Lifschitz E, Zamir D (2003) The SELF-PRUNING gene family in tomato. Plant Mol Biol 52:1215–1222

    Article  CAS  PubMed  Google Scholar 

  • Carmona MJ, Calonje M, Martínez-Zapater JM (2007) The FT/TFL1 gene family in grapevine. Plant Mol Biol 63:637–650

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarti PP, Prasad RBN (2012) Biodiesel Production from Jatropha curcas Oil. In: Carels N, Sujatha M, Bahadur B (eds) Jatropha, challenges for a new energy crop vol 1: farming, economics and biofuel. Springer New York, pp 463–490. doi:10.1007/978-1-4614-4806-8_25

  • Chardon F, Damerval C (2005) Phylogenomic analysis of the PEBP gene family in cereals. J Mol Evol 61:579–590

    Article  CAS  PubMed  Google Scholar 

  • Chen M-S, Wang G-J, Wang R-L, Wang J, Song S-Q, Xu Z-F (2011) Analysis of expressed sequence tags from biodiesel plant Jatropha curcas embryos at different developmental stages. Plant Sci 181:696–700. doi:10.1016/j.plantsci.2011.03.004

    Article  CAS  PubMed  Google Scholar 

  • Chikara J, Prakash A, Mastan SG, Ghosh A (2013) Genetic Improvement in Jatropha curcas Through Selection and Breeding. In: Bahadur B, Sujatha M, Carels N (eds) Jatropha, Challenges for a New Energy Crop. Volume 2: Genetic Improvement and Biotechnology. Springer New York, pp 119–133. doi:10.1007/978-1-4614-4915-7_8

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Danilevskaya ON, Meng X, Hou Z, Ananiev EV, Simmons CR (2008) A genomic and expression compendium of the expanded PEBP gene family from maize. Plant Physiol 146:250–264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ding L-W, Sun Q-Y, Wang Z-Y, Sun Y-B, Xu Z-F (2008) Using silica particles to isolate total RNA from plant tissues recalcitrant to extraction in guanidine thiocyanate. Anal Biochem 374:426–428

    Article  CAS  PubMed  Google Scholar 

  • Divakara BN, Upadhyaya HD, Wani SP, Gowda CLL (2010) Biology and genetic improvement of Jatropha curcas L.: a review. Appl Energy 87:732–742

    Article  CAS  Google Scholar 

  • Ellerström M, Stfålberg K, Ezcurra I, Rask L (1996) Functional dissection of a napin gene promoter: identification of promoter elements required for embryo and endosperm-specific transcription. Plant Mol Biol 32:1019–1027

    Article  PubMed  Google Scholar 

  • Ezcurra I, Ellerström M, Wycliffe P, Stålberg K, Rask L (1999) Interaction between composite elements in the napA promoter: both the B-box ABA-responsive complex and the RY/G complex are necessary for seed-specific expression. Plant Mol Biol 40:699–709. doi:10.1023/A:1006206124512

    Article  CAS  PubMed  Google Scholar 

  • Ezcurra I, Wycliffe P, Nehlin L, Ellerström M, Rask L (2000) Transactivation of the Brassica napus napin promoter by ABI3 requires interaction of the conserved B2 and B3 domains of ABI3 with different cis-elements: B2 mediates activation through an ABRE, whereas B3 interacts with an RY/G-box. Plant J 24:57–66

    Article  CAS  PubMed  Google Scholar 

  • Fairless D (2007) The little shrub that could—maybe. Nature 449:652–655

    Article  PubMed  Google Scholar 

  • Gressel J (2008) Transgenics are imperative for biofuel crops. Plant Sci 174:246–263

    Article  CAS  Google Scholar 

  • Hanzawa Y, Money T, Bradley D (2005) A single amino acid converts a repressor to an activator of flowering. Proc Natl Acad Sci USA 102:7748–7753

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hedman H, Källman T, Lagercrantz U (2009) Early evolution of the MFT-like gene family in plants. Plant Mol Biol 70:359–369

    Article  CAS  PubMed  Google Scholar 

  • Heller J (1996) Physic nut Jatropha curcas L. Promoting the conservation and use of underutilized and neglected crops 1. International Plant Genetic Resources Institute, Rome, Italy

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Igasaki T, Watanabe Y, Nishiguchi M, Kotoda N (2008) The FLOWERING LOCUS T/TERMINAL FLOWER 1 family in Lombardy poplar. Plant Cell Physiol 49:291–300. doi:10.1093/Pcp/Pcn010

    Article  CAS  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in plants. EMBO J 6:3901–3907

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jha B, Mishra A, Jha A, Joshi M (2013) Developing transgenic Jatropha using the SbNHX1 gene from an extreme halophyte for cultivation in saline wasteland. PLoS One 8:e71136. doi:10.1371/journal.pone.0071136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang H, Wu P, Zhang S, Song C, Chen Y, Li M, Jia Y, Fang X, Chen F, Wu G (2012) Global analysis of gene expression profiles in developing physic nut (Jatropha curcas L.) seeds. PLoS One 7(5):e36522. doi:10.1371/journal.pone.0036522

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karlgren A, Gyllenstrand N, Källman T, Sundström JF, Moore D, Lascoux M, Lagercrantz U (2011) Evolution of the PEBP gene family in plants: functional diversification in seed plant evolution. Plant Physiol 156:1967–1977

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kawagoe Y, Murai N (1992) Four distinct nuclear proteins recognize in vitro the proximal promoter of the bean seed storage protein β-phaseolin gene conferring spatial and temporal control. Plant J 2:927–936

    CAS  PubMed  Google Scholar 

  • Kikuchi R, Kawahigashi H, Ando T, Tonooka T, Handa H (2009) Molecular and functional characterization of PEBP genes in barley reveal the diversification of their roles in flowering. Plant Physiol 149:1341–1353

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim SY, Chung H-J, Thomas TL (1997) Isolation of a novel class of bZIP transcription factors that interact with ABA-responsive and embryo-specification elements in the Dc3 promoter using a modified yeast one-hybrid system. Plant J 11:1237–1251

    Article  CAS  PubMed  Google Scholar 

  • King AJ, He W, Cuevas JA, Freudenberger M, Ramiaramanana D, Graham IA (2009) Potential of Jatropha curcas as a source of renewable oil and animal feed. J Exp Bot 60:2897–2905

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Sci Signal 286:1960–1962

    CAS  Google Scholar 

  • Kucera B, Cohn MA, Leubner-Metzger G (2005) Plant hormone interactions during seed dormancy release and germination. Seed Sci Res 15:281–307

    Article  CAS  Google Scholar 

  • Kumar N, Reddy M, Sujatha M (2013) Genetic transformation of jatropha curcas: current status and future prospects. In: Bahadur B, Sujatha M, Carels N (eds.) Jatropha, challenges for a new energy crop. Volume 2: Genetic improvement and biotechnology. Springer New York, pp 535–546. doi:10.1007/978-1-4614-4915-7_28

  • Le BH, Cheng C, Bui AQ, Wagmaister JA, Henry KF, Pelletier J, Kwong L, Belmonte M, Kirkbride R, Horvath S (2010) Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors. Proc Natl Acad Sci USA 107:8063–8070

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lelievre J-M, Oliveira LO, Nielsen NC (1992) 5′-CATGCAT-3′ elements modulate the expression of glycinin genes. Plant Physiol 98:387–391

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lessard PA, Allen RD, Bernier F, Crispino JD, Fujiwara T, Beachy RN (1991) Multiple nuclear factors interact with upstream sequences of differentially regulated β-conglycinin genes. Plant Mol Biol 16:397–413

    Article  CAS  PubMed  Google Scholar 

  • Li L, Coppola E, Rine J, Miller JL, Walker D (2010) Catalytic hydrothermal conversion of triglycerides to non-ester biofuels. Energy Fuels 24:1305–1315

    Article  CAS  Google Scholar 

  • Li R, Wang A, Sun S, Liang S, Wang X, Ye Q, Li H (2012) Functional characterization of FT and MFT ortholog genes in orchid (Dendrobium nobile Lindl) that regulate the vegetative to reproductive transition in Arabidopsis. Plant Cell. Tissue Organ Culture (PCTOC) 111:143–151

    Article  CAS  Google Scholar 

  • Makkar HRS, Becker K (2009) Jatropha curcas, a promising crop for the generation of biodiesel and value-added coproducts. Eur J Lipid Sci Technol 111:773–787

    Article  CAS  Google Scholar 

  • Menkens AE, Schindler U, Cashmore AR (1995) The G-box: a ubiquitous regulatory DNA element in plants bound by the GBF family of bZIP proteins. Trends Biochem Sci 20:506

    Article  CAS  PubMed  Google Scholar 

  • Nakamura S, Abe F, Kawahigashi H, Nakazono K, Tagiri A, Matsumoto T, Utsugi S, Ogawa T, Handa H, Ishida H (2011) A wheat homolog of MOTHER OF FT AND TFL1 acts in the regulation of germination. Plant Cell 23:3215–3229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nishikawa F, Endo T, Shimada T, Fujii H, Shimizu T, Omura M (2008) Isolation and characterization of a Citrus FT/TFL1 homologue (CuMFT1), which shows quantitatively preferential expression in Citrus seeds. J Jpn Soc Hortic Sci 77:38–46

    Article  CAS  Google Scholar 

  • Pan B-Z, Xu Z-F (2011) Benzyladenine treatment significantly increases the seed yield of the biofuel plant Jatropha curcas. J Plant Growth Regul 30:166–174. doi:10.1007/s00344-010-9179-3

    Article  CAS  Google Scholar 

  • Pan JL, Fu QT, Xu ZF (2010) Agrobacterium tumefaciens-mediated transformation of biofuel plant Jatropha curcas using kanamycin selection. Afr J Biotechnol 9:6477–6481

    CAS  Google Scholar 

  • Parcy F, Valon C, Raynal M, Gaubier-Comella P, Delseny M, Giraudat J (1994) Regulation of gene expression programs during Arabidopsis seed development: roles of the ABI3 locus and of endogenous abscisic acid. Plant Cell 6:1567–1582

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qu J, Mao HZ, Chen W, Gao SQ, Bai YN, Sun YW, Geng YF, Ye J (2012) Development of marker-free transgenic Jatropha plants with increased levels of seed oleic acid. Biotechnol Biofuels 5:10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reidt W, Wohlfarth T, Ellerström M, Czihal A, Tewes A, Ezcurra I, Rask L, Bäumlein H (2000) Gene regulation during late embryogenesis: the RY motif of maturation-specific gene promoters is a direct target of the FUS3 gene product. Plant J 21:401–408

    Article  CAS  PubMed  Google Scholar 

  • Sanderson K (2009) Wonder weed plans fail to flourish. Nature 461:328–329

    Article  CAS  PubMed  Google Scholar 

  • Serre L, Pereira de Jesus K, Zelwer C, Bureaud N, Schoentgen F, Bénédetti H (2001) Crystal structures of YBHB and YBCL from Escherichia coli, two bacterial homologues to a Raf kinase inhibitor protein. J Mol Biol 310:617–634

    Article  CAS  PubMed  Google Scholar 

  • Sibéril Y, Doireau P, Gantet P (2001) Plant bZIP G-box binding factors. Eur J Biochem 268:5655–5666

    Article  PubMed  Google Scholar 

  • Siebert PD, Chenchik A, Kellogg DE, Lukyanov KA, Lukyanov SA (1995) An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res 23:1087

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stålberg K, Ellerstöm M, Ezcurra I, Ablov S, Rask L (1996) Disruption of an overlapping E-box/ABRE motif abolished high transcription of the napA storage-protein promoter in transgenic Brassica napus seeds. Planta 199:515–519

    Article  PubMed  Google Scholar 

  • Sujatha M, Reddy TP, Mahasi MJ (2008) Role of biotechnological interventions in the improvement of castor (Ricinus communis L.) and Jatropha curcas L. Biotechnol Adv 26:424–435

    Article  CAS  PubMed  Google Scholar 

  • Suzuki A, Wu C-Y, Washida H, Takaiwa F (1998) Rice MYB protein OSMYB5 specifically binds to the AACA motif conserved among promoters of genes for storage protein glutelin. Plant Cell Physiol 39:555–559

    Article  CAS  PubMed  Google Scholar 

  • Tsuchimoto S, Cartagena J, Khemkladngoen N, Singkaravanit S, Kohinata T, Wada N, Sakai H, Morishita Y, Suzuki H, Shibata D (2012) Development of transgenic plants in jatropha with drought tolerance. Plant Biotechnol 29:137–143

    Article  CAS  Google Scholar 

  • Vicente-Carbajosa J, Moose SP, Parsons RL, Schmidt RJ (1997) A maize zinc-finger protein binds the prolamin box in zein gene promoters and interacts with the basic leucine zipper transcriptional activator Opaque2. Proc Natl Acad Sci USA 94:7685–7690

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu C-Y, Suzuki A, Washida H, Takaiwa F (1998) The GCN4 motif in a rice glutelin gene is essential for endosperm-specific gene expression and is activated by Opaque-2 in transgenic rice plants. Plant J 14:673–683

    Article  CAS  PubMed  Google Scholar 

  • Wu C-Y, Washida H, Onodera Y, Harada K, Takaiwa F (2000) Quantitative nature of the prolamin-box, ACGT and AACA motifs in a rice glutelin gene promoter: minimal cis-element requirements for endosperm-specific gene expression. Plant J 23:415–421

    Article  CAS  PubMed  Google Scholar 

  • Xi W, Liu C, Hou X, Yu H (2010) MOTHER OF FT AND TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis. Plant Cell 22:1733–1748

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yanagisawa S (2000) Dof1 and Dof2 transcription factors are associated with expression of multiple genes involved in carbon metabolism in maize. Plant J 21:281–288

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa S, Schmidt RJ (1999) Diversity and similarity among recognition sequences of Dof transcription factors. Plant J 17:209–214

    Article  CAS  PubMed  Google Scholar 

  • Yoo SY, Kardailsky I, Lee JS, Weigel D, Ahn JH (2004) Acceleration of flowering by overexpression of MFT (MOTHER OF FT AND TFL1). Mol Cells 17:95

    CAS  PubMed  Google Scholar 

  • Yue GH, Sun F, Liu P (2013) Status of molecular breeding for improving Jatropha curcas and biodiesel. Renew Sustain Energy Rev 26:332–343. doi:10.1016/j.rser.2013.05.055

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Top Science and Technology Talents Scheme of Yunnan Province (2009CI123), the Natural Science Foundation of Yunnan Province (2011FA034) and the CAS 135 program (XTBG-T02) to Z.-F. Xu. The authors gratefully acknowledge the Central Laboratory of the Xishuangbanna Tropical Botanical Garden for providing the research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeng-Fu Xu.

Additional information

Z.-F. Xu is a non-member of the Botanical Society of Japan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, YB., Luo, L., He, LL. et al. A promoter analysis of MOTHER OF FT AND TFL1 1 (JcMFT1), a seed-preferential gene from the biofuel plant Jatropha curcas . J Plant Res 127, 513–524 (2014). https://doi.org/10.1007/s10265-014-0639-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-014-0639-x

Keywords

Navigation