Skip to main content
Log in

Effect of auxin physiological analogues on rapeseed (Brassica napus) cold hardening, seed yield and quality

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

The effect of the auxin physiological analogues analogues 1-[2-chloroethoxycarbonylmethyl]-4-naphthalenesulfonic acid calcium salt (TA-12) and 1-[2-dimethylaminoethoxicarbonylmethyl]naphthalene chlormethylate (TA-14) TA-14 on different winter rapeseed cultivars were studied with regard to their autumnal growth, cold hardening, accumulation of the stress-protective metabolites proline and saccharide in plant organs: apical bud and root collum, winter survival and productivity formation. The test cultivars were the very early ‘Libea’ medium-resistant to wintering, the medium-early ‘Sunday’ resistant to wintering, the medium–early ‘Valesca’ less than medium resistant to wintering, and the early ‘Hornet’ (hybrid) tolerant to stress growth conditions. During the period of cold hardening in natural field conditions, the test compounds TA-12 (2 mM) and TA-14 (4 mM), applied to different winter rapeseed cultivars at the 4th–5th leaf stage, stimulate accumulation proline and saccharides (sucrose and glucose) in the root collum and apical bud tissues, influence plants acclimation to cold, overwintering and productivity formation. Compounds TA-12 and especially TA-14 produced a stable effect on seed and crude fat yield in cvs. ‘Hornet’, ‘Sunday’ and ‘Libea’. The genotypic peculiarities of a cultivar and the meteorological conditions of the plant vegetation period were the factors that mostly determined fatty acid content in seed oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

TA-12:

1-[2-Chloroethoxycarbonyl-methyl]-4-naphthalenesulfonic acid calcium salt

TA-14:

1-[2-Dimethylaminoethoxicarbonylmethyl]naphthalene chlormethylate

DM:

Dry mass

DW:

Dry weight

References

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline content for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bravo LA, Zúñiga GE, Alberdi M, Corcuera LJ (1998) The role of ABA in freezing tolerance and cold acclimation in barley. Physiol Plant 103:17–23

    Article  CAS  Google Scholar 

  • Burbulis N, Kuprienė R, Blinstrubienė A (2008) Investigation of cold resistance of winter rapeseed in vitro. Sodininkystė ir daržininkystė 27:223–232

    Google Scholar 

  • Butkutė B (2004) Factors influencing accuracy of NIR calibrations for the prediction of quality of Lithuania grown rapeseed. In: Davies AMC, Garrido-Varo A (eds) Near infrared spectroscopy. Proceedings of the 11th international conference on near infrared spectroscopy. NIR publications, Chichester, UK, pp 405–410

  • Christopherson SW, Glass RL (1969) Preparation of milk fat methylesters by alcoholysis in an essentially non alcoholic solution. J Diary Sci 52:1289–1290

    Article  CAS  Google Scholar 

  • Crowe JH, Carpenter FF, Crowe LM, Anchordoguy TJ (1990) Are freezing and dehydration similar stress vectors? A comparison of modes of interaction of stabilizing solutes with biomolecules. Cryobiol 27:219–231

    Article  CAS  Google Scholar 

  • Cuevas JC, López-Cobollo R, Alcázar R, Zarza X, Koncz C, Altabella T, Salinas J, Tiburcio AF, Ferrando A (2008) Putrescine is involved in Arabidopsis freezing tolerance and cold acclimation by regulating abscisic acid levels in response to low temperature. Plant Physiol 148:1094–1105

    Article  PubMed  CAS  Google Scholar 

  • Cuevas JC, López-Cobollo R, Alcázar R, Zarza X, Koncz C, Altabella T, Salinas J, Tiburcio AF, Ferrando A (2009) Putrescine as a signal to modulate the indispensable ABA increase under cold stress. Plant Signal Behav 4:219–220 (PMCID: PMC2652534)

    Google Scholar 

  • Dionne J, Castonguary Y, Nadeau P, Desjardins Y (2001) Amino acids and protein changes during cold acclimation of green-type annual bluegrass (Poa annua L.) ecotypes. Crop Sci 41:1862–1870

    Article  CAS  Google Scholar 

  • Folch J, Less M, Sloanc-Stanly GH (1957) A simple method for isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  • Gavelienė V, Novickienė L, Miliuvienė L (2007) Improving of oilseed rape lateral root formation by physiological analogues of auxin. Acta Physiol Plant 29:291–295

    Article  Google Scholar 

  • Gilmour SJ, Hajela RK, Thomashow MF (1988) Cold acclimation in Arabidopsis thaliana. Plant Physiol 87:745–750

    Article  PubMed  CAS  Google Scholar 

  • Gothandam KM, Nalini E, Karthikeyan S, Shin JS (2010) OsPRP3, a flower specific proline-rich protein of rice, determines extracellular matrix structure of floral organs and its overexpression confers cold-tolerance. Plant Mol Biol 72:125–135

    Article  PubMed  CAS  Google Scholar 

  • Hunter JE (1990) n-3 fatty acids from vegetable oils. Am J Clin Nutr 51:809–814

    PubMed  CAS  Google Scholar 

  • Klotke J, Kopta J, Gatzke N, Heyer AG (2004) Impact of soluble sugar concentrations on the acquisition of freezing tolerance in accessions of Arabidopsis thaliana with contrasting cold adaptation—evidence for a role of raffinose in cold acclimation. Plant Cell Environ 27:1395–1404

    Article  CAS  Google Scholar 

  • Lecomte C, Girand A, Aubert V (2003) Testing a predicting model for frost resistance of winter wheat under natural conditions. Agronomie 23:51–66. doi:10.1051/agro:2002068

    Article  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  PubMed  CAS  Google Scholar 

  • McKown R, Kuroki G, Warren G (1996) Cold responses of Arabidopsis mutants impaired in freezing tolerance. J of Exp Botany 47:1919–1925

    Article  CAS  Google Scholar 

  • Meier U (ed) (2001) Growth stages of mono- and dicotyledonous plants. BBCH Monograph. Federal Biology Research Centre for Agriculture and Forestry. 2nd edn

  • Merkys A, Novickienė L, Darginavičienė J, Maksimov G (2007) Advantages of auxin analogues of plant growth and productivity regulators. Int J Environ Pollut 29:443–456

    Article  CAS  Google Scholar 

  • Miliuvienė L, Novickienė L, Gavelienė V (2003) Effect of 17-DMC on phytohormone level and growth of rapeseed plants (Brassica napus). Russ J Plant Physiol 50:656–660

    Article  Google Scholar 

  • Novickienė L, Jurevičius J (1997) The problem of plant growth regulation and prospects of its solution 1. Physiological analogues of auxin and peculiarities of their activity. Biology 3:61–68

    Google Scholar 

  • Novickienė L, Darginavičienė J, Maksimov G (2004) Root initiation and development by auxin physiological analogue TA-12. Acta Univer Latviensis Biol 676:201–206. http://eeb.lu.lv/EEB/2004/Novickiene.pdf

    Google Scholar 

  • Novickienė L, Gavelienė V, Miliuvienė L, Kazlauskienė D, Pakalniškytė L (2010) Analysis of lateral root growth in Arabidopsis in response to physiologically active auxin analogues. Acta Agronom Hungarica 58:1–10

    Article  Google Scholar 

  • Rademacher W (2000) Growth retardants: effect on Gibberellin Biosynthesis and other Metabolic Pathways. Annu Rev Plant Physiol Plant Mol Biol 51:501–531

    Article  PubMed  CAS  Google Scholar 

  • Sakalauskaitė J, Brazaitytė A, Urbonavičiūtė A, Samuolienė G, Šabajevienė G, Sakalauskienė S, Duchovskis P (2010) Radish plant behaviour under short-term elevated ozone fumigation. Cent Eur J Biol 5:674–681. doi:10.2478/s11535-010-0057-6

    Article  Google Scholar 

  • Shibasaki K, Uemura M, Tsurumi S, Rahman A (2009) Auxin response in Arabidopsis under cold stress: underlying molecular mechanisms. [C], [W]. Plant Cell 21:3823–3838

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  PubMed  CAS  Google Scholar 

  • Skuodienė L, Gradeckas A (2004) Skirtingomis sąlygomis augančių gluosnių fiziologinė būklė (Physiological state of willow species depending on the site conditions). Ekologija (Ecology) 2:1–7 (in Lithuanian)

    Google Scholar 

  • Szalai G, Pap M, Janda T (2009) Light-induced frost tolerance differs in winter and spring wheat plants. J Plant Physiol 166:1826–1831

    Article  PubMed  CAS  Google Scholar 

  • Thelen JJ, Ohlorogge JB (2002) Metabolic engineering of fatty acid biosynthesis in plants. Metab Eng 4:12–21

    Article  PubMed  CAS  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Ann Rev Plant Biol 50:571–599

    Article  CAS  Google Scholar 

  • Uemura M, Gilmour SJ, Thomashow MF, Steponkus PL (1996) Effects of COR6.6 and COR15am polypeptides encoded by COR (cold-regulated) genes of Arabidopsis thaliana on the freeze-induced fusion and leakage of liposomes. Plant Physiol 111:313–327

    Article  PubMed  CAS  Google Scholar 

  • Velička R, Rimkevičienė M, Novickienė L, Anisimovienė N, Brazauskienė I (2005) Improvement of oil rape hardening and frost tolerance. Russ J Plant Physiol 52:532–553

    Google Scholar 

  • Velička R, Marcinkeviciene A, Raudonius S, Rimkeviciene M (2006) Integrated evoluation of rape readiness for overwintering. Acta Agric Scandinavica Soil Plant Sci 56:110–116

    Google Scholar 

  • Verbruggen N, Hermans Ch (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759

    Article  PubMed  CAS  Google Scholar 

  • Veselov DS, Sabirzhanova I, Akhiyarova G, Veselova SV, Farkhutdinov RG, Mustafina AR, Mitrichenko AN, Dedov AV, Veselov SYu, Kudoyarova GR (2002) The role of hormones in fast growth responses of wheat plants to osmotic and cold shocks. Russ J Plant Physiol 49:513–517

    Article  CAS  Google Scholar 

  • Wanner LA, Junttila O (1999) Cold-induced freezing tolerance in Arabidopsis. Plant Physiol 120:391–400

    Article  PubMed  CAS  Google Scholar 

  • Webb MS, Uemura M, Steponkus PL (1994) A comparison of freezing injury in oat and rye: two cereals at the extremes of freezing tolerance. Plant Physiol 104:467–478

    PubMed  CAS  Google Scholar 

  • Xiong L, Schumaker KS, Zhu JK (2002) Cell signalling during cold, draught, and salt stress. Plant Cell (suppl) 14:165–183

    Article  Google Scholar 

  • Zhang JZ, Creelman RA, Zhu JK (2004) From laboratory to field. Information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol 135:615–621

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study partly was supported by the Lithuanian Research Council under the project ‘Biokuras’ in 2008–2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virgilija Gavelienė.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gavelienė, V., Novickienė, L. & Pakalniškytė, L. Effect of auxin physiological analogues on rapeseed (Brassica napus) cold hardening, seed yield and quality. J Plant Res 126, 283–292 (2013). https://doi.org/10.1007/s10265-012-0525-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-012-0525-3

Keywords

Navigation