Skip to main content
Log in

Global transcriptomic profiling of aspen trees under elevated [CO2] to identify potential molecular mechanisms responsible for enhanced radial growth

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Aspen (Populus tremuloides) trees growing under elevated [CO2] at a free-air CO2 enrichment (FACE) site produced significantly more biomass than control trees. We investigated the molecular mechanisms underlying the observed increase in biomass by producing transcriptomic profiles of the vascular cambium zone (VCZ) and leaves, and then performed a comparative study to identify significantly changed genes and pathways after 12 years exposure to elevated [CO2]. In leaves, elevated [CO2] enhanced expression of genes related to Calvin cycle activity and linked pathways. In the VCZ, the pathways involved in cell growth, cell division, hormone metabolism, and secondary cell wall formation were altered while auxin conjugation, ABA synthesis, and cytokinin glucosylation and degradation were inhibited. Similarly, the genes involved in hemicellulose and pectin biosynthesis were enhanced, but some genes that catalyze important steps in lignin biosynthesis pathway were inhibited. Evidence from systemic analysis supported the functioning of multiple molecular mechanisms that underpin the enhanced radial growth in response to elevated [CO2].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aloni R, Langhans M, Aloni E, Dreieicher E, Ullrich CI (2005) Root-synthesized cytokinin in Arabidopsis is distributed in the shoot by the transpiration stream. J Exp Bot 56:1535–1544

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Angelis PD, Chigwerewe KS, Scarascia Mugnozza GE (2004) Litter quality and decomposition in a CO2-enriched Mediterranean forest ecosystem. Plant Soil 224:31–41

    Article  Google Scholar 

  • Avonce N, Leyman B, Thevelein J, Iturriaga G (2005) Trehalose metabolism and glucose sensing in plants. Biochem Soc Trans 33:276–279

    Article  PubMed  CAS  Google Scholar 

  • Barbehenn RV, Karowe DN, Chen Z (2004) Performance of a generalist grasshopper on a C3 and a C4 grass: compensation for the effects of elevated CO2 on plant nutritional quality. Oecologia 140:96–103

    Article  PubMed  Google Scholar 

  • Barkla BJ, Vera-Estrella R, Pantoja O, Kirch HH, Bohnert HJ (1999) Aquaporin localization—how valid are the TIP and PIP labels? Trends Plant Sci 4:86–88

    Article  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc B 57:289–300

    Google Scholar 

  • Benson D, Lipman DJ, Ostell J (1993) GenBank. Nucleic Acids Res 21:2963–2965

    Article  PubMed  CAS  Google Scholar 

  • Bootten TJ, Harris PJ, Melton LD, Newman RH (2004) Solid-state 13C-NMR spectroscopy shows that the xyloglucans in the primary cell walls of mung bean (Vigna radiata L.) occur in different domains: a new model for xyloglucan-cellulose interactions in the cell wall. J Exp Bot 55:571–583

    Article  PubMed  CAS  Google Scholar 

  • Breitling R, Armengaud P, Amtmann A, Herzyk P (2004) Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett 573:83–92

    Article  PubMed  CAS  Google Scholar 

  • Busov VB, Meilan R, Pearce DW, Ma C, Rood SB et al (2003) Activation tagging of a dominant gibberellin catabolism gene (GA 2-oxidase) from poplar that regulates tree stature. Plant Physiol 132:1283–1291

    Article  PubMed  CAS  Google Scholar 

  • Canman JC, Hoffman DB, Salmon ED (2000) The role of pre- and post-anaphase microtubules in the cytokinesis phase of the cell cycle. Curr Biol 10:611–614

    Article  PubMed  CAS  Google Scholar 

  • Casler MD, Buxton DR, Vogel KP (2002) Genetic modification of lignin concentration affects fitness of perennial herbaceous plants. Theor Appl Genet 104:127–131

    Article  PubMed  CAS  Google Scholar 

  • Chen K, Hu GQ, Lenz F (2006) Effects of doubled atmospheric CO2 concentration on apple trees. IV. Water consumption. CABI Abstract

  • Conley MM, Kimball BA, Brooks TJ, Jr PP, Hunsaker DJ et al (2001) CO2 enrichment increases water-use efficiency in sorghum. New Phytol 151:407–412

    Article  Google Scholar 

  • Cooper KF, Strich R (2002) Saccharomyces cerevisiae C-type cyclin Ume3p/Srb11p is required for efficient induction and execution of meiotic development. Eukaryot Cell 1:66–74

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove DJ (2000) Loosening of plant cell walls by expansins. Nature 407:321–326

    Article  PubMed  CAS  Google Scholar 

  • Darbah JNT, Kubiske ME, Nelson N, Kets K, Riikonen J et al (2010) Will photosynthetic capacity of forest trees acclimate after long-term exposure to elevated CO2 and O3? Environ Pollut 158:983–991

    Article  PubMed  CAS  Google Scholar 

  • Deprost D, Yao L, Sormani R, Moreau M, Leterreux G et al (2007) The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation. EMBO Rep 8:864–870

    Article  PubMed  CAS  Google Scholar 

  • Derbyshire P, McCann MC, Roberts K (2007) Restricted cell elongation in Arabidopsis hypocotyls is associated with a reduced average pectin esterification level. BMC Plant Biol 7:31

    Article  PubMed  Google Scholar 

  • Dickson RE, Lewin KF, JGEA Isebrands (2000) Forest atmosphere carbon transfer and storage (FACTS-II) the aspen free-air CO2 and O3 enrichment (FACE) project: an overview. U.S. Department of Agriculture, Forest Service, General Tachnical Report, NC-214, St. Paul, MN, USA

  • Druart N, Rodriguez-Buey M, Barron-Gafford G, Sjodin A, Bhalerao R et al (2006) Molecular targets of elevated CO2 in leaves and stems of Populus deltoides: implications for future tree growth and carbon sequestration. Funct Plant Biol 33:121–131

    Article  CAS  Google Scholar 

  • Du J, Xie HL, Zhang DQ, He XQ, Wang MJ et al (2006) Regeneration of the secondary vascular system in poplar as a novel system to investigate gene expression by a proteomic approach. Proteomics 6:881–895

    Article  PubMed  Google Scholar 

  • Fukuzawa H, Yamano T (2005) Mechanism of CO2-responsive transcriptional regulation in photosynthetic organisms: carbon-concentrating mechanism in a green alga, Chlamydomonas reinhardtii. Tanpakushitsu Kakusan Koso 50:958–965

    PubMed  CAS  Google Scholar 

  • Ghanem ME, Albacete A, Smigocki AC, Frebort I, Pospisilova H et al (2011) Root-synthesized cytokinins improve shoot growth and fruit yield in salinized tomato (Solanum lycopersicum L.) plants. J Exp Bot 62:125–140

    Article  PubMed  CAS  Google Scholar 

  • Goujon T, Minic Z, El Amrani A, Lerouxel O, Aletti E et al (2003) AtBXL1, a novel higher plant (Arabidopsis thaliana) putative beta-xylosidase gene, is involved in secondary cell wall metabolism and plant development. Plant J Cell Mol Biol 33:677–690

    Article  CAS  Google Scholar 

  • Gregory SL, Ebrahimi S, Milverton J, Jones WM, Bejsovec A et al (2008) Cell division requires a direct link between microtubule-bound RacGAP and Anillin in the contractile ring. Curr Biol 18:25–29

    Article  PubMed  CAS  Google Scholar 

  • Gupta P, Duplessis S, White H, Karnosky DF, Martin F et al (2005) Gene expression patterns of trembling aspen trees following long-term exposure to interacting elevated CO2 and tropospheric O3. New Plytologist 167:129–142

    Article  CAS  Google Scholar 

  • Hamm-Alvarez SF, Sheetz MP (1998) Microtubule-dependent vesicle transport: modulation of channel and transporter activity in liver and kidney. Physiol Rev 78:1109–1129

    PubMed  CAS  Google Scholar 

  • Herrero AB, Magnelli P, Mansour MK, Levitz SM, Bussey H et al (2004) KRE5 gene null mutant strains of Candida albicans are avirulent and have altered cell wall composition and hypha formation properties. Eukaryot Cell 3:1423–1432

    Article  PubMed  CAS  Google Scholar 

  • Hillstrom ML, Lindroth RL (2008) Elevated atmospheric carbon dioxide and ozone alter forest insect abundance and community composition. Insect Conserv Divers 1:233–241

    Article  Google Scholar 

  • Hirose N, Makita N, Kojima M, Kamada-Nobusada T, Sakakibara H (2007) Overexpression of a type-A response regulator alters rice morphology and cytokinin metabolism. Plant Cell Physiol 48:523–539

    Article  PubMed  CAS  Google Scholar 

  • Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ et al (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264

    Article  PubMed  Google Scholar 

  • Isebrand JG, McDonald EP, Kruger E, Hendrey G, Percy K et al (2001) Growth responses of Populus tremuloides clones to interacting elevated carbon dioxide and tropospheric ozone. Environ Pollut 115:359–371

    Article  PubMed  CAS  Google Scholar 

  • Ji P, Agrawal S, Diederichs S, Baumer N, Becker A et al (2005) Cyclin A1, the alternative A-type cyclin, contributes to G1/S cell cycle progression in somatic cells. Oncogene 24:2739–2744

    Article  PubMed  CAS  Google Scholar 

  • Joubes J, Lemaire-Chamley M, Delmas F, Walter J, Hernould M et al (2001) A new C-type cyclin-dependent kinase from tomato expressed in dividing tissues does not interact with mitotic and G1 cyclins. Plant Physiol 126:1403–1415

    Article  PubMed  CAS  Google Scholar 

  • Krizek BA (2009) Making bigger plants: key regulators of final organ size. Curr Opin Plant Biol 12:17–22

    Article  PubMed  CAS  Google Scholar 

  • Kubiske ME, Quinn VS, Marquardt PE, Karnosky DF (2007) Effects of elevated atmospheric CO2 and/or O3 on intra- and interspecific competitive ability of aspen. Plant Biol (Stuttg) 9:342–355

    Article  CAS  Google Scholar 

  • Kutschera U (1990) Cell wall synthesis and elongation growth in hypocotyls of Helianthus annuus (L.). Planta 181:316–323

    Article  Google Scholar 

  • Larkin K, Danilchik MV (1999) Microtubules are required for completion of cytokinesis in sea urchin eggs. Dev Biol 214:215–226

    Article  PubMed  CAS  Google Scholar 

  • Leakey AD, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP et al (2009) Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot 60:2859–2876

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre S, Lawson T, Zakhleniuk OV, Lloyd JC, Raines CA et al (2005) Increased sedoheptulose-1,7-bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development. Plant Physiol 138:451–460

    Article  PubMed  CAS  Google Scholar 

  • Li F, Kang S, Zhang F (2003) Effects of CO2 enrichment, nitrogen and water on photosynthesis, evapotranspiration and water use efficiency of spring wheat. Ying Yong Sheng Tai Xue Bao 14:387–393

    PubMed  CAS  Google Scholar 

  • Li QM, Liu BB, Wu Y, Zou ZR (2008) Interactive effects of drought stresses and elevated CO2 concentration on photochemistry efficiency of cucumber seedlings. J Integr Plant Biol 50:1307–1317

    Article  PubMed  Google Scholar 

  • Liu L, King JS, Giardina CP (2005) Effects of elevated concentrations of atmospheric CO2 and tropospheric O3 on leaf litter production and chemistry in trembling aspen and paper birch communities. Tree Physiol 25:1511–1522

    Article  PubMed  CAS  Google Scholar 

  • Liu N, Lu M, Tian X, Han Z (2006) Molecular mechanisms involved in self-renewal and pluripotency of embryonic stem cells. J Cell Physiol 221:279–286

    Google Scholar 

  • Liu LL, King JS, Giardina CP, Booker FLFL (2009) The Influence of chemistry, production and community composition on leaf litter decomposition under elevated atmospheric CO2 and Tropospheric O3 in a northern hardwood ecosystem. Ecosystems 12:401–416

    Article  CAS  Google Scholar 

  • Ma QH (2007) Small GTP-binding proteins and their functions in plants. J Plant Growth Regul 26:369–388

    Article  CAS  Google Scholar 

  • Macdonald B (1986) Practical woody plant propagation for nursery growers. Timber Press, Inc., Portland

    Google Scholar 

  • Maeshima M (2001) TONOPLAST TRANSPORTERS: organization and Function. Annu Rev Plant Physiol Plant Mol Biol 52:469–497

    Article  PubMed  CAS  Google Scholar 

  • Meyer RC, Steinfath M, Lisec J, Becher M, Witucka-Wall H et al (2007) The metabolic signature related to high plant growth rate in Arabidopsis thaliana. Proc Natl Acad Sci USA 104:4759–4764

    Article  PubMed  CAS  Google Scholar 

  • Muto E, Sakai H, Kaseda K (2005) Long-range cooperative binding of kinesin to a microtubule in the presence of ATP. J Cell Biol 168:691–696

    Article  PubMed  CAS  Google Scholar 

  • Nakashima A, Maruki Y, Imamura Y, Kondo C, Kawamata T et al (2008) The yeast Tor signaling pathway is involved in G2/M transition via polo-kinase. PLoS ONE 3:e2223

    Article  PubMed  Google Scholar 

  • Nielsen TH, Rung JH, Villadsen D (2004) Fructose-2,6-bisphosphate: a traffic signal in plant metabolism. Trends Plant Sci 9:556–563

    Article  PubMed  CAS  Google Scholar 

  • Nieminen K, Immanen J, Laxell M, Kauppinen L, Tarkowski P et al (2008) Cytokinin signaling regulates cambial development in poplar. Proc Natl Acad Sci USA 105:20032–20037

    Article  PubMed  CAS  Google Scholar 

  • Okamoto M, Kuwahara A, Seo M, Kushiro T, Asami T et al (2006) CYP707A1 and CYP707A2, which encode abscisic acid 8′-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis. Plant Physiol 141:97–107

    Article  PubMed  CAS  Google Scholar 

  • Okamoto M, Kushiro T, Jikumaru Y, Abrams SR, Kamiya Y et al (2011) ABA 9′-hydroxylation is catalyzed by CYP707A in Arabidopsis. Phytochemistry 72:717–722

    Article  PubMed  CAS  Google Scholar 

  • Orcutt DM, Nilsen ET, Hale MG (2000) The physiology of plants under stress: soil and biotic factors. Wiley, New York

    Google Scholar 

  • Persson S, Wei H, Milne J, Page G, Somervile C (2005a) Identification of genes required for cellulose synthesis by regression analysis of publica microarray data sets. Proc Natl Acad Sci USA 102:8633–8638

    Article  PubMed  CAS  Google Scholar 

  • Persson S, Wei H, Milne J, Page GP, Somerville CR (2005b) Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets. Proc Nat Acad Sci USA 102:8633–8638

    Article  PubMed  CAS  Google Scholar 

  • Pregitzer KS, Burton AJ, King JS, Zak DR (2008) Soil respiration, root biomass, and root turnover following long-term exposure of northern forests to elevated atmospheric CO2 and tropospheric O3. New Phytol 180:153–161

    Article  PubMed  CAS  Google Scholar 

  • Schnitzer MJ, Block SM (1997) Kinesin hydrolyses one ATP per 8-nm step. Nature 388:386–390

    Article  PubMed  CAS  Google Scholar 

  • Smith HB (1999) Constructing signal transduction pathways in Arabidopsis. Plant Cell 11:299–301

    PubMed  CAS  Google Scholar 

  • Surka MC, Tsang CW, Trimble WS (2002) The mammalian septin MSF localizes with microtubules and is required for completion of cytokinesis. Mol Biol Cell 13:3532–3545

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Mitsui K, Yamanaka S (2003) Role of ERas in promoting tumour-like properties in mouse embryonic stem cells. Nature 423:541–545

    Article  PubMed  CAS  Google Scholar 

  • Tamoi M, Nagaoka M, Miyagawa Y, Shigeoka S (2006) Contribution of fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase to the photosynthetic rate and carbon flow in the Calvin cycle in transgenic plants. Plant Cell Physiol 47:380–390

    Article  PubMed  CAS  Google Scholar 

  • Taylor G, Street NR, Tricker PJ, Sjodin A, Graham L et al (2005) The transcriptome of Populus in elevated CO2. New Phytol 167:143–154

    Article  PubMed  CAS  Google Scholar 

  • Thomas BR, Rodriguez RL (1994) Metabolite signals regulate gene expression and source/sink relations in cereal seedlings. Plant Physiol 106:1235–1239

    PubMed  CAS  Google Scholar 

  • Tiwari SB, Wang XJ, Hagen G, Guilfoyle TJ (2001) AUX/IAA proteins are active repressors, and their stability and activity are modulated by auxin. Plant Cell 13:2809–2822

    PubMed  CAS  Google Scholar 

  • Tiwari SB, Hagen G, Guilfoyle TJ (2004) Aux/IAA proteins contain a potent transcriptional repression domain. Plant Cell 16:533–543

    Article  PubMed  CAS  Google Scholar 

  • To JP, Deruere J, Maxwell BB, Morris VF, Hutchison CE et al (2007) Cytokinin regulates type-A Arabidopsis Response Regulator activity and protein stability via two-component phosphorelay. Plant Cell 19:3901–3914

    Article  PubMed  CAS  Google Scholar 

  • Trivedi P, Edwards JW, Wang J, Gadbury GL, Srinivasasainagendra V et al (2005) HDBStat!: a platform-independent software suite for statistical analysis of high dimensional biology data. BMC Bioinform 6:86

    Article  Google Scholar 

  • Tuba Z, Lichtenthaler HK (2007) Long-term acclimation of plants to elevated CO2 and its interaction with stresses. Ann N Y Acad Sci 1113:135–146

    Article  PubMed  CAS  Google Scholar 

  • Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    Article  PubMed  CAS  Google Scholar 

  • Uddling J, Teclaw RM, Kubiske ME, Pregitzer KS, Ellsworth DS (2008) Sap flux in pure aspen and mixed aspen-birch forests exposed to elevated concentrations of carbon dioxide and ozone. Tree Physiol 28:1231–1243

    Article  PubMed  CAS  Google Scholar 

  • Uematsu K, Suzuki N, Iwamae T, Inui M, Yukawa H (2012) Increased fructose 1,6-bisphosphate aldolase in plastids enhances growth and photosynthesis of tobacco plants. J Exp Bot 63:3001–3009

    Article  PubMed  CAS  Google Scholar 

  • Welters P, Takegawa K, Emr SD, Chrispeels MJ (1994) AtVPS34, a phosphatidylinositol 3-kinase of Arabidopsis thaliana, is an essential protein with homology to a calcium-dependent lipid binding domain. Proc Nat Acad Sci USA 91:11398–11402

    Article  PubMed  CAS  Google Scholar 

  • Yang Z (2002) Small GTPases: versatile signaling switches in plants. Plant Cell 14(Suppl):S375–S388

    PubMed  CAS  Google Scholar 

  • Yu Y, Steinmetz A, Meyer D, Brown S, Shen WH (2003) The tobacco A-type cyclin, Nicta;CYCA3;2, at the nexus of cell division and differentiation. Plant Cell 15:2763–2777

    Article  PubMed  CAS  Google Scholar 

  • Zaragoza D, Ghavidel A, Heitman J, Schultz MC (1998) Rapamycin induces the G0 program of transcriptional repression in yeast by interfering with the TOR signaling pathway. Mol Cell Biol 18:4463–4470

    PubMed  CAS  Google Scholar 

  • Zdobnov EM, Apweiler R (2001) InterProScan—an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17:847–848

    Article  PubMed  CAS  Google Scholar 

  • Zhong R, Lee C, Zhou J, McCarthy RL, Ye ZH (2008) A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell 20:2763–2782

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hairong Wei or Andrew Burton.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 213 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, H., Gou, J., Yordanov, Y. et al. Global transcriptomic profiling of aspen trees under elevated [CO2] to identify potential molecular mechanisms responsible for enhanced radial growth. J Plant Res 126, 305–320 (2013). https://doi.org/10.1007/s10265-012-0524-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-012-0524-4

Keywords

Navigation