Skip to main content
Log in

Coexpression landscape in ATTED-II: usage of gene list and gene network for various types of pathways

  • JPR Symposium
  • International Conference on Arabidopsis Research 2010
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Gene coexpression analyses are a powerful method to predict the function of genes and/or to identify genes that are functionally related to query genes. The basic idea of gene coexpression analyses is that genes with similar functions should have similar expression patterns under many different conditions. This approach is now widely used by many experimental researchers, especially in the field of plant biology. In this review, we will summarize recent successful examples obtained by using our gene coexpression database, ATTED-II. Specifically, the examples will describe the identification of new genes, such as the subunits of a complex protein, the enzymes in a metabolic pathway and transporters. In addition, we will discuss the discovery of a new intercellular signaling factor and new regulatory relationships between transcription factors and their target genes. In ATTED-II, we provide two basic views of gene coexpression, a gene list view and a gene network view, which can be used as guide gene approach and narrow-down approach, respectively. In addition, we will discuss the coexpression effectiveness for various types of gene sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akiyama K, Chikayama E, Yuasa H, Shimada Y, Tohge T, Shinozaki K, Hirai MY, Sakurai T, Kikuchi J, Saito K (2008) PRIMe: a Web site that assembles tools for metabolomics and transcriptomics. In Silico Biol 8:339–345

    CAS  PubMed  Google Scholar 

  • Anderson PW (1972) More is different. Science 177:393–396

    Article  CAS  PubMed  Google Scholar 

  • Aoki K, Ogata Y, Shibata D (2007) Approaches for extracting practical information from gene co-expression networks in plant biology. Plant Cell Physiol 48:381–390

    Article  CAS  PubMed  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29

    Article  CAS  PubMed  Google Scholar 

  • Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M, Edgar R (2007) NCBI GEO: mining tens of millions of expression profiles—database and tools update. Nucleic Acids Res 35:D760–D765

    Article  CAS  PubMed  Google Scholar 

  • Batagelj V, Mrvar A (1998) Pajek program for large network analysis. Connections 21:47–57

    Google Scholar 

  • Bednarek P, Pislewska-Bednarek M, Svatos A, Schneider B, Doubsky J, Mansurova M, Humphry M, Consonni C, Panstruga R, Sanchez-Vallet A, Molina A, Schulze-Lefert P (2009) A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science 323:101–106

    Article  CAS  PubMed  Google Scholar 

  • Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, Christmas R, Avila-Campilo I, Creech M, Gross B, Hanspers K, Isserlin R, Kelley R, Killcoyne S, Lotia S, Maere S, Morris J, Ono K, Pavlovic V, Pico AR, Vailaya A, Wang PL, Adler A, Conklin BR, Hood L, Kuiper M, Sander C, Schmulevich I, Schwikowski B, Warner GJ, Ideker T, Bader GD (2007) Integration of biological networks and gene expression data using Cytoscape. Nat Protoc 2:2366–2382

    Article  CAS  PubMed  Google Scholar 

  • Craigon DJ, James N, Okyere J, Higgins J, Jotham J, May S (2004) NASCArrays: a repository for microarray data generated by NASC’s transcriptomics service. Nucleic Acids Res 32:D575–D577

    Article  CAS  PubMed  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    Article  CAS  PubMed  Google Scholar 

  • Hirai MY, Sugiyama K, Sawada Y, Tohge T, Obayashi T, Suzuki A, Araki R, Sakurai N, Suzuki H, Aoki K, Goda H, Nishizawa OI, Shibata D, Saito K (2007) Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. Proc Natl Acad Sci USA 104:6478–6483

    Article  CAS  PubMed  Google Scholar 

  • Ishihara S, Takabayashi A, Ido K, Endo T, Ifuku K, Sato F (2007) Distinct functions for the two PsbP-like proteins PPL1 and PPL2 in the chloroplast thylakoid lumen of Arabidopsis. Plant Physiol 145:668–679

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa N, Takabayashi A, Ishida S, Hano Y, Endo T, Sato F (2008) NDF6: a thylakoid protein specific to terrestrial plants is essential for activity of chloroplastic NAD(P)H dehydrogenase in Arabidopsis. Plant Cell Physiol 49:1066–1073

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:D480–484

    Google Scholar 

  • Kinoshita K, Obayashi T (2009) Multi-dimensional correlations for gene coexpression and application to the large-scale data of Arabidopsis. Bioinformatics 25:2677–2684

    Article  CAS  PubMed  Google Scholar 

  • Lee TH, Kim YK, Pham TT, Song SI, Kim JK, Kang KY, An G, Jung KH, Galbraith DW, Kim M, Yoon UH, Nahm BH (2009) RiceArrayNet: a database for correlating gene expression from transcriptome profiling, and its application to the analysis of coexpressed genes in rice. Plant Physiol 151:16–33

    Article  CAS  PubMed  Google Scholar 

  • Lysenko A, Hindle MM, Taubert J, Saqi M, Rawlings CJ (2009) Data integration for plant genomics—exemplars from the integration of Arabidopsis thaliana databases. Brief Bioinform 10:676–693

    Article  CAS  PubMed  Google Scholar 

  • Manfield IW, Jen C-H, Pinney JW, Michalopoulos I, Bradford JR, Gilmartin PM, Westhead DR (2006) Arabidopsis Co-expression Tool (ACT): web server tools for microarray-based gene expression analysis. Nucleic Acids Res 34:W504–W509

    Article  CAS  PubMed  Google Scholar 

  • Masuda T, Fujita Y (2008) Regulation and evolution of chlorophyll metabolism. Photochem Photobiol Sci 7:1131–1149

    Article  CAS  PubMed  Google Scholar 

  • Mutwil M, Obro J, Willats WGT, Persson S (2008) GeneCAT—novel webtools that combine BLAST and co-expression analyses. Nucleic Acids Res 36:W320–W326

    Article  CAS  PubMed  Google Scholar 

  • Obayashi T, Kinoshita K (2009) Rank of correlation coefficient as a comparable measure for biological significance of gene coexpression. DNA Res 16:249–260

    Article  CAS  PubMed  Google Scholar 

  • Obayashi T, Okegawa T, Sasaki-Sekimoto Y, Shimada H, Masuda T, Asamizu E, Nakamura Y, Shibata D, Tabata S, Takamiya K, Ohta H (2004) Distinctive features of plant organs characterized by global analysis of gene expression in Arabidopsis. DNA Res 11:11–25

    Article  CAS  PubMed  Google Scholar 

  • Obayashi T, Kinoshita K, Nakai K, Shibaoka M, Hayashi S, Saeki M, Shibata D, Saito K, Ohta H (2007) ATTED-II: a database of co-expressed genes and cis elements for identifying co-regulated gene groups in Arabidopsis. Nucleic Acids Res 35:D863–D869

    Article  CAS  PubMed  Google Scholar 

  • Obayashi T, Hayashi S, Shibaoka M, Saeki M, Ohta H, Kinoshita K (2008) COXPRESdb: a database of coexpressed gene networks in mammals. Nucleic Acids Res 36:D77–D82

    Article  CAS  PubMed  Google Scholar 

  • Obayashi T, Hayashi S, Saeki M, Ohta H, Kinoshita K (2009) ATTED-II provides coexpressed gene networks for Arabidopsis. Nucleic Acids Res 37:D987–D991

    Article  CAS  PubMed  Google Scholar 

  • Ogata Y, Suzuki H, Shibata D (2009a) A gene co-expression database for understanding biological process in soybean. Plant Biotechnol 26:503–507

    CAS  Google Scholar 

  • Ogata Y, Suzuki H, Shibata D (2009b) A database for poplar gene co-expression analysis for systematic understanding of biological processes, including stress responses. J Wood Sci 55:395–400

    Article  CAS  Google Scholar 

  • Okazaki Y, Shimojima M, Sawada Y, Toyooka K, Narisawa T, Mochida K, Tanaka H, Matsuda F, Hirai A, Hirai MY, Ohta H, Saito K (2009) A chloroplastic UDP-glucose pyrophosphorylase from Arabidopsis is the committed enzyme for the first step of sulfolipid biosynthesis. Plant Cell 21:892–909

    Article  CAS  PubMed  Google Scholar 

  • Pitzschke A, Hirt H (2010) Bioinformatic and systems biology tools to generate testable models of signaling pathways and their targets. Plant Physiol 152:460–469

    Google Scholar 

  • Rocca-Serra P, Brazma A, Parkinson H, Sarkans U, Shojatalab M, Contrino S, Vilo J, Abeygunawardena N, Mukherjee G, Holloway E, Kapushesky M, Kemmeren P, Lara GG, Oezcimen A, Sansone SA (2003) ArrayExpress: a public database of gene expression data at EBI. C R Biol 326:1075–1078

    Article  CAS  PubMed  Google Scholar 

  • Saito K, Hirai MY, Yonekura-Sakakibara K (2008) Decoding genes with coexpression networks and metabolomics—‘majority report by precogs’. Trends Plant Sci 13:36–43

    Article  CAS  PubMed  Google Scholar 

  • Sano R, Ogata Y, Suzuki H, Ogawa Y, Dansako T, Sakurai N, Okazaki K, Aoki K, Saito K, Shibata D (2008) Over-expression of transcription associated factor genes coexpressed with genes of the mevalonate pathway, upstream of isoprenoid biosynthesis, in Arabidopsis cultured cells. Plant Biotechnol 25:583–587

    CAS  Google Scholar 

  • Sawada Y, Kuwahara A, Nagano M, Narisawa T, Sakata A, Saito K, Hirai MY (2009a) Omics-based approaches to methionine side chain elongation in Arabidopsis: characterization of the genes encoding methylthioalkylmalate isomerase and methylthioalkylmalate dehydrogenase. Plant Cell Physiol 50:1181–1190

    Article  CAS  PubMed  Google Scholar 

  • Sawada Y, Toyooka K, Kuwahara A, Sakata A, Nagano M, Saito K, Hirai MY (2009b) Arabidopsis bile acid: sodium symporter family protein 5 is involved in methionine-derived glucosinolate biosynthesis. Plant Cell Physiol 50:1579–1586

    Article  CAS  PubMed  Google Scholar 

  • Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Scholkopf B, Weigel D, Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37:501–506

    Article  CAS  PubMed  Google Scholar 

  • Srinivasasainagendra V, Page GP, Mehta T, Coulibaly I, Loraine AE (2008) CressExpress: a tool for large-scale mining of expression data from Arabidopsis. Plant Physiol 147:1004–1016

    Article  CAS  PubMed  Google Scholar 

  • Steinhauser D, Usadel B, Luedemann A, Thimm O, Kopka J (2004) CSB.DB: a comprehensive systems-biology database. Bioinformatics 20:3647–3651

    Article  CAS  PubMed  Google Scholar 

  • Sugano SS, Shimada T, Imai Y, Okawa K, Tamai A, Mori M, Hara-Nishimura I (2010) Stomagen positively regulates stomatal density in Arabidopsis. Nature 463:241–244

    Article  CAS  PubMed  Google Scholar 

  • Swarbreck D, Wilks C, Lamesch P, Berardini TZ, Garcia-Hernandez M, Foerster H, Li D, Meyer T, Muller R, Ploetz L, Radenbaugh A, Singh S, Swing V, Tissier C, Zhang P, Huala E (2008) The Arabidopsis Information Resource (TAIR): gene structure and function annotation. Nucleic Acids Res 36:D1009–D1014

    Article  CAS  PubMed  Google Scholar 

  • Takabayashi A, Ishikawa N, Obayashi T, Ishida S, Obokata J, Endo T, Sato F (2009) Three novel subunits of Arabidopsis chloroplastic NAD(P)H dehydrogenase identified by bioinformatic and reverse genetic approaches. Plant J 57:207–219

    Article  CAS  PubMed  Google Scholar 

  • Takahashi N, Lammens T, Boudolf V, Maes S, Yoshizumi T, De Jaeger G, Witters E, Inze D, De Veylder L (2008) The DNA replication checkpoint aids survival of plants deficient in the novel replisome factor ETG1. EMBO J 27:1840–1851

    Article  CAS  PubMed  Google Scholar 

  • Tohge T, Yonekura-Sakakibara K, Niida R, Watanabe-Takahashi A, Saito K (2007) Phytochemical genomics in Arabidopsis thaliana: a case study for functional identification of flavonoid biosynthesis genes. Pure Apple Chem 79:811–823

    Article  CAS  Google Scholar 

  • Tokimatsu T, Sakurai N, Suzuki H, Ohta H, Nishitani K, Koyama T, Umezawa T, Misawa N, Saito K, Shibata D (2005) KaPPA-view: a web-based analysis tool for integration of transcript and metabolite data on plant metabolic pathway maps. Plant Physiol 138:1289–1300

    Article  CAS  PubMed  Google Scholar 

  • Toufighi K, Brady M, Austin R, Ly E, Provart N (2005) The botany array resource: e-northerns, expression angling, and promoter analyses. Plant J 43:153–163

    Article  CAS  PubMed  Google Scholar 

  • Usadel B, Obayashi T, Mutwil M, Giorgi FM, Bassel GW, Tanimoto M, Chow A, Steinhauser D, Persson S, Provart NJ (2009) Co-expression tools for plant biology: opportunities for hypothesis generation and caveats. Plant Cell Environ 32:1633–1651

    Article  CAS  PubMed  Google Scholar 

  • Vicinanza M, D’Angelo G, Di Campli A, De Matteis MA (2008) Function and dysfunction of the PI system in membrane trafficking. EMBO J 27:2457–2470

    Article  CAS  PubMed  Google Scholar 

  • Yamada K, Nagano AJ, Nishina M, Hara-Nishimura I, Nishimura M (2008) NAI2 is an endoplasmic reticulum body component that enables ER body formation in Arabidopsis thaliana. Plant Cell 20:2529–2540

    Article  CAS  PubMed  Google Scholar 

  • Yonekura-Sakakibara K, Tohge T, Niida R, Saito K (2007) Identification of a flavonol 7-O-rhamnosyltransferase gene determining flavonoid pattern in Arabidopsis by transcriptome coexpression analysis and reverse genetics. J Biol Chem 282:14932–14941

    Article  CAS  PubMed  Google Scholar 

  • Yonekura-Sakakibara K, Tohge T, Matsuda F, Nakabayashi R, Takayama H, Niida R, Watanabe-Takahashi A, Inoue E, Saito K (2008) Comprehensive flavonol profiling and transcriptome coexpression analysis leading to decoding gene-metabolite correlations in Arabidopsis. Plant Cell 20:2160–2176

    Article  CAS  PubMed  Google Scholar 

  • Yoshida Y, Makita Y, Heida N, Asano S, Matsushima A, Ishii M, Mochizuki Y, Masuya H, Wakana S, Kobayashi N, Toyoda T (2009) PosMed (Positional Medline): prioritizing genes with an artificial neural network comprising medical documents to accelerate positional cloning. Nucleic Acids Res 37:W147–W152

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research (No. 50397048) to TO and a Grant-in-Aid for Scientific Research on Priority Areas “Transportsome” to KK. Computation time was provided by the Super Computer System, Human Genome Center, Institute of Medical Science, The University of Tokyo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Obayashi.

Additional information

Takeshi Obayashi is the recipient of the BSJ Special Award, 2009.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table S1 (XLS 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Obayashi, T., Kinoshita, K. Coexpression landscape in ATTED-II: usage of gene list and gene network for various types of pathways. J Plant Res 123, 311–319 (2010). https://doi.org/10.1007/s10265-010-0333-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-010-0333-6

Keywords

Navigation