Skip to main content
Log in

Molecular phylogeny of Japanese Eleocharis (Cyperaceae) based on ITS sequence data, and chromosomal evolution

  • Original Article
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

ITS sequence data were used to estimate the phylogeny of 24 Japanese Eleocharis species and to make karyomorphological observations on 19 of these taxa. Two major clades were identified in Japanese Eleocharis molecular phylogenetic trees: (1) one including all species of section Limnochloa, and (2) another comprising two sections, Pauciflorae and Eleocharis. Phylogenetic analysis including both Japanese and North American species also shows strong support for monophyly of the Mutatae/Limnochloa clade. The width of the spikelets in the species Mutatae/Limnochloa is the same as that of the culms, indicating that the relative widths of spikelets and culms are useful characteristics for classification. Two major clades were supported by karyomorphological data. All taxa of section Limnochloa had very small chromosomes, while sections Pauciflorae and Eleocharis had large chromosomes. The basic chromosome number of sections Eleocharis and Pauciflorae is thought to be x=5. Chromosomal evolution in the genus Eleocharis with diffuse centromeric chromosomes may be caused by both aneuploidization and polyploidization. Our data suggest that a 3-bp insertion near the 3′ end of the 5.8S gene is useful for intrageneric delimitations of the genus Eleocharis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6A–Q

Similar content being viewed by others

References

  • Adachi J, Hasegawa M (1996) Computer science monographs 28. Molphy version 2.3. Programs for molecular phylogenetics base on maximum likelihood. Institute of Statistical Mathematics, Tokyo

  • Bruhl JJ (1995) Sedge genera of the world: relationships and a new classification of the Cyperaceae. Aust J Syst Bot 8:125–305

    Google Scholar 

  • Clarke CB (1909) Illustrations of Cyperaceae. London

  • Felsenstein J (1980–2001) PHYLIP (Phylogeny Inference Package) and manual, version 3.573c. Dept Genetics, Univ of Washington, Seattle

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

    Google Scholar 

  • Goetghebeur P (1985) Studies in Cyperaceae 6. Nomenclature of the suprageneric taxa in the Cyperaceae. Taxon 34:617–632

    Google Scholar 

  • Goldman N, Anderson JP, Rodrigo AG (2000) Likelihood-based tests of topologies in phylogenetics. Syst Biol 49:652–670

    Article  CAS  PubMed  Google Scholar 

  • González-Elizondo MS, Peterson PM (1997) A classification of and key to the supraspecific taxa in Eleocharis. Taxon 46:433–449

    Google Scholar 

  • HÃ¥kansson A (1954) Meiosis and pollen mitosis in x-rayed and untreated spikelets of Eleocharis palustris. Hereditas 40:325–345

    Google Scholar 

  • Harms LJ (1968) Cytotaxonomic studies in Eleocharis subser. palustres: central united taxa. Am J Bot 55:966–974

    Google Scholar 

  • Hasegawa M, Kishino H (1994) Accuracies of the simple methods for estimating the bootstrap probability of a maximum-likelihood tree. Mol Biol Evol 11:142–145

    CAS  Google Scholar 

  • Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174

    CAS  PubMed  Google Scholar 

  • Hodkinson TR, Chase MW, Lledo D, Salamin N, Renvoize SA (2002) Molecular phylogeny of Miscanthus s.l., Saccharum and related genera (Saccharinae, Andropogoneae, Poaceae) using DNA sequences from the ITS nuclear ribosomal DNA and the plastid trnL–F regions. J Plant Res 115:381–392

    Article  CAS  PubMed  Google Scholar 

  • Hoshino T (1987) Karyomorphological studies on 6 taxa of Eleocharis in Japan. Bull Okayama Univ Sci 22A:305–312

    Google Scholar 

  • Hoshino T, Rajbhandari KR, Ohba H (2000) Cytological studies of eleven species of Cyperaceae collected from central Nepal. Cytologia 65:219–224

    Google Scholar 

  • Hsiao C, Chatterton NJ, Asay KH, Jensen KB (1994) Phylogenetic relationships of 10 grass species: an assessment of phylogenetic utility of the internal transcribed spacer region in nuclear ribosomal DNA in monocots. Genome 37:112–120

    CAS  PubMed  Google Scholar 

  • Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J Mol Evol 29:170–179

    CAS  PubMed  Google Scholar 

  • Kishino H, Miyata T, Hasegawa M (1990) Maximum likelihood inference of protein phylogeny and the origin of the chloroplasts. J Mol Evol 31:151–160

    CAS  Google Scholar 

  • Koyama T (1961) Classification of the family Cyperaceae 1. J Fac Sci Univ Tokyo Sect III Bot 8:84–99

    Google Scholar 

  • Kukkonen I (1998) Cyperaceae. In: Rechinger KH (ed) Flora Iranica, vol 173. Akademische Druck- u. Verlagsanstalt, Graz

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: Molecular Evolutionary Genetics Analysis software, Bioinformatics

  • Muasya AM, Simpson DS, Chase MW, Culham A (1998) An assessment of suprageneric phylogeny in Cyperaceae using rbcL DNA sequences. Plant Syst Evol 211:257–271

    CAS  Google Scholar 

  • Nijalingappa BHM (1973) Cytological studies in Eleocharis. Caryologia 26:513–520

    Google Scholar 

  • Ohwi J (1943) Cyperaceae Japonicae. II. A synopsis of the Rhynchosporoideae and Sciropoideae of Japan, including the Kuriles, Saghalien, Korea and Formosa. Mem Coll Sci Kyoto Imp Univ Ser B Biol 18:29–49

    Google Scholar 

  • Olsen GJ, Matsuda H, Hagstrom R, Overbeek R (1994) FastDNAml: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput Appl Biosci 10:41–48

    CAS  PubMed  Google Scholar 

  • Rivadavia F, Kondo K, Kato M, Hasebe M (2003) Phylogeny of the sundews, Drosera (Droseraceae), based on chloroplast rbcL and nuclear 18S ribosomal DNA sequences. Am J Bot 90:123–130

    CAS  Google Scholar 

  • Roalson EH, Friar EA (2000) Infrageneric classification of Eleocharis (Cyperaceae) revisited:evidence from the internal transcribed spacer (ITS) region of nuclear ribosomal DNA. Syst Bot 25:323–336

    Google Scholar 

  • Roalson EH, Columbus JT, Friar EA (2001) Phylogenetic relationships in Cariceae (Cyperaceae) based on ITS (nrDNA) and trnT-L-F (cpDNA) region sequences: assessment of subgeneric and sectional relationships in Carex with emphasis on section Acrocystis. Syst Bot 26:318–341

    Google Scholar 

  • Shimodaira H (2000) Another calculation of the p-value for the problem of regions using the scaled bootstrap resamplings. Tech Rep No 2000–35. Stanford Univ, California

  • Shimodaira H (2002) An approximately unbiased test of phylogenetic tree selection. Syst Biol 51:492–508

    Article  PubMed  Google Scholar 

  • Shimodaira H, Hasegawa M (2001) CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 17:1246–1247

    Google Scholar 

  • Simpson DA, Furness CA, Hodkinson TR, Muthama Muasya A, Chase MW (2003) Phylogenetic relationships in Cyperaceae subfamily Mapanioideae inferred from pollen and plastid DNA sequence data. Am J Bot 90:1071–1086

    CAS  Google Scholar 

  • Smith SG, Bruhl JJ, González-Elizondo MS, Menapace FJ (2002) Eleocharis. In: Flora of North America editorial committee (ed) Flora of North America, vol 23. Magnoliophyta: Commeliaidae (in part) Cyperaceae. Oxford University Press, New York, pp 60–120

  • Starr JR, Bayer RJ, Ford BA (1999) The phylogenetic position of Carex section Phyllostachys and ITS implication for phylogeny and subgeneric circumscription in Carex (Cyperaceae). Am J Bot 86:563–577

    CAS  PubMed  Google Scholar 

  • Strimmer K, von Haeseler A (1996) Quartet puzzling: a quartet maximum likelihood method for reconstructing tree topologies. Mol Biol Evol 13:964–969

    CAS  Google Scholar 

  • Svenson HK (1929) Monographic studies in the genus Eleocharis. Rhodora 31:121–135; 167–191

    Google Scholar 

  • Svenson HK (1934) Monographic studies in the genus Eleocharis. Rhodora 36:377–389

    Google Scholar 

  • Svenson HK (1937) Monographic studies in the genus Eleocharis. Rhodora 39:271–272

    Google Scholar 

  • Svenson HK (1939) Monographic studies in the genus Eleocharis. Rhodora 41:3–19; 95–104

    Google Scholar 

  • Swofford DL (2003) PAUP*: phylogenetic analysis using parsimony (* and other methods), version 4.0b 10. Sinauer Associates, Sunderland, Massachusetts

  • Tanaka N (1948) The problem of aneuploidy. Biological contribution in Japan (in Japanese), 4. Hokuryukan, Tokyo, pp 136–317

  • Thompson JD, Higgins DG, Gibson TJ (1994) ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    CAS  PubMed  Google Scholar 

  • Tsubota H, Akiyama H, Yamaguchi T, Deguchi H (2001) Molecular phylogeny of the genus Trismegistia and related genera (Sematophyllaceae, Musci) based on chloroplast rbcL sequences. Hikobia 13:529–549

    Google Scholar 

  • Tsubota H, Ageno Y, Estébanez B, Yamaguchi T, Deguchi H (2003) Molecular phylogeny of the Grimmiales (Musci) based on chloroplast rbcL sequences. Hikobia 14:55–70

    Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols, a guide to methods and applications. Academic Press, New York, pp 315–22

Download references

Acknowledgements

The authors thank Dr. Marcia J. Waterway for critical review and invaluable comments on the paper. We also thank Dr. Eisuke Hayasaka, Dr. Hiroshi Ikeda, Kisaku Kameyama, Masaaki Komizunai, Dr. Masatsugu Yokota, Satoko Ozaki, Susumu Mitani, and Tomomi Masaki for their great help on field trips and in collecting plant materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuji Hoshino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yano, O., Katsuyama, T., Tsubota, H. et al. Molecular phylogeny of Japanese Eleocharis (Cyperaceae) based on ITS sequence data, and chromosomal evolution. J Plant Res 117, 409–419 (2004). https://doi.org/10.1007/s10265-004-0173-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-004-0173-3

Keywords

Navigation