Skip to main content
Log in

A study on the role of articular cartilage soft tissue constitutive form in models of whole knee biomechanics

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

A Correction to this article was published on 22 November 2018

This article has been updated

Abstract

The mechanical behaviors of biological soft tissues are challenging to describe abstractly, with each individual tissue potentially characterized by its own unique nonlinear, anisotropic, and viscoelastic properties. These complexities are exacerbated by patient to patient variability, both mechanically and anatomically, and by inherent constitutive heterogeneity. Despite these challenges, computational models of whole knee biomechanics can be instrumental in describing the onset and progression of injury and disease. In this work, a three-dimensional whole knee computational model was developed using patient-specific anatomy, containing tissues with constitutive relationships built from relevant experimental investigations. In an effort to address the common assumption of linear elastic descriptions of articular cartilage in whole knee models, this work investigates the implications, with respect to macroscopic kinematics and local deformation, of incorporating physiologically motivated and mechanically accurate constitutive heterogeneity in articular cartilage, highlighting the sensitivities of each corresponding level of constitutive complexity. We show how the inclusion of representative cartilage material models affects deformation distributions within the joint, as well as relative joint motion. In particular, the assumption of linear elasticity in articular cartilage results in an overprediction of joint motion and significantly affects predicted local cartilage strains, while full-field, mechanically heterogeneous cartilage descriptions have a less drastic effect at both the tissue and joint levels. Nonetheless, joints containing complete descriptions of articular cartilage heterogeneity may be an integral component in building comprehensive computational tools to advance our understanding of injury and disease mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Change history

  • 22 November 2018

    Based on a reader comment, it has become clear that, in the originally published version of the article, Fig. 1 was published with incorrect anatomical labels.

  • 22 November 2018

    Based on a reader comment, it has become clear that, in the originally published version of the article, Fig.?1 was published with incorrect anatomical labels.

References

  • Abdel-Rahman EM, Hefzy MS (1998) Three-dimensional dynamic behaviour of the human knee joint under impact loading. Med Eng Phys 20(4):276–290

    Google Scholar 

  • Adouni M, Shirazi-Adl A, Shirazi R (2012) Computational biodynamics of human knee joint in gait: from muscle forces to cartilage stresses. J Biomech 45(12):2149–2156

    Google Scholar 

  • Alentorn-Geli E, Myer GD, Silvers HJ, Samitier G, Romero D, Lázaro-Haro C, Cugat R (2009) Prevention of non-contact anterior cruciate ligament injuries in soccer players. Part 1: mechanisms of injury and underlying risk factors. Knee Surg Sports Traumatol Arthrosc 17(7):705–729

    Google Scholar 

  • Amis A, Dawkins G (1991) Functional anatomy of the anterior cruciate ligament. Fibre bundle actions related to ligament replacements and injuries. J Bone Joint Surg 73(2):260–267

    Google Scholar 

  • Appleyard R, Burkhardt D, Ghosh P, Read R, Cake M, Swain M, Murrell G (2003) Topographical analysis of the structural, biochemical and dynamic biomechanical properties of cartilage in an ovine model of osteoarthritis. Osteoarthr Cartil 11(1):65–77

    Google Scholar 

  • Appleyard RC, Swain MV, Khanna S, Murrell GA (2001) The accuracy and reliability of a novel handheld dynamic indentation probe for analysing articular cartilage. Phys Med Biol 46(2):541

    Google Scholar 

  • Arruda EM, Boyce MC (1993) A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J Mech Phys Solids 41(2):389–412

    MATH  Google Scholar 

  • Athanasiou K, Rosenwasser M, Buckwalter J, Malinin T, Mow V (1991) Interspecies comparisons of in situ intrinsic mechanical properties of distal femoral cartilage. J Orthop Res 9(3):330–340

    Google Scholar 

  • Atkinson P, Atkinson T, Huang C, Doane R (2000) A comparison of the mechanical and dimensional properties of the human medial and lateral patellofemoral ligaments. In: Proceedings of the 46th annual meeting of the orthopaedic research society. Orlando, FL

  • Atmaca H, Kesemenli CC, Memişoğlu K, Özkan A, Celik Y (2013) Changes in the loading of tibial articular cartilage following medial meniscectomy: a finite element analysis study. Knee Surg Sports Traumatol Arthrosc 21(12):2667–2673

    Google Scholar 

  • Bae JY, Kim G-H, Seon JK, Jeon I. (2015) Finite element study on the anatomic transtibial technique for single-bundle anterior cruciate ligament reconstruction. Med Biol Eng Comput 54:1–10

    Google Scholar 

  • Baldwin MA, Clary CW, Fitzpatrick CK, Deacy JS, Maletsky LP, Rullkoetter PJ (2012) Dynamic finite element knee simulation for evaluation of knee replacement mechanics. J Biomech 45(3):474–483

    Google Scholar 

  • Beaulieu ML, Oh YK, Bedi A, Ashton-Miller JA, Wojtys EM (2014) Does limited internal femoral rotation increase peak anterior cruciate ligament strain during a simulated pivot landing? Am J Sports Med 0363546514549446

  • Beaulieu ML, Wojtys EM, Ashton-Miller JA (2015) Risk of anterior cruciate ligament fatigue failure is increased by limited internal femoral rotation during in vitro repeated pivot landings. Am J Sports Med 43(9):2233–2241

    Google Scholar 

  • Bedi A, Warren RF, Wojtys EM, Oh YK, Ashton-Miller JA, Oltean H, Kelly BT (2014) Restriction in hip internal rotation is associated with an increased risk of acl injury. Knee Surg Sports Traumatol Arthrosc 24:1–8

    Google Scholar 

  • Beillas P, Papaioannou G, Tashman S, Yang K (2004) A new method to investigate in vivo knee behavior using a finite element model of the lower limb. J Biomech 37(7):1019–1030

    Google Scholar 

  • Bendjaballah MZ, Shirazi-Adl A, Zukor D (1997) Finite element analysis of human knee joint in varus–valgus. Clin Biomech 12(3):139–148

    Google Scholar 

  • Besier TF, Fredericson M, Gold GE, Beaupré GS, Delp SL (2009) Knee muscle forces during walking and running in patellofemoral pain patients and pain-free controls. J Biomech 42(7):898–905

    Google Scholar 

  • Bischoff J, Arruda E, Grosh K (2002) A microstructurally based orthotropic hyperelastic constitutive law. J Appl Mech 69(5):570–579

    MATH  Google Scholar 

  • Blankevoort L, Huiskes R (1996) Validation of a three-dimensional model of the knee. J Biomech 29(7):955–961

    Google Scholar 

  • Briant P, Bevill S, Andriacchi T (2015) Cartilage strain distributions are different under the same load in the central and peripheral tibial plateau regions. J Biomech Eng 137(12):121009

    Google Scholar 

  • Butler D, Sheh M, Stouffer D, Samaranayake V, Levy MS (1990) Surface strain variation in human patellar tendon and knee cruciate ligaments. J Biomech Eng 112(1):38–45

    Google Scholar 

  • Deneweth JM, Bey MJ, McLean SG, Lock TR, Kolowich PA, Tashman S (2010) Tibiofemoral joint kinematics of the anterior cruciate ligament-reconstructed knee during a single-legged hop landing. Am J Sports Med 38(9):1820–1828

    Google Scholar 

  • Deneweth JM, McLean SG, Arruda EM (2013a) Evaluation of hyperelastic models for the non-linear and non-uniform high strain-rate mechanics of tibial cartilage. J Biomech 46(10):1604–1610

    Google Scholar 

  • Deneweth JM, Newman KE, Sylvia SM, McLean SG, Arruda EM (2013b) Heterogeneity of tibial plateau cartilage in response to a physiological compressive strain rate. J Orthop Res 31(3):370–375

    Google Scholar 

  • Deneweth JM, Arruda EM, McLean SG (2015) Hyperelastic modeling of location-dependent human distal femoral cartilage mechanics. Int J Non Linear Mech 68:146–156

    Google Scholar 

  • Dhaher YY, Kwon T-H, Barry M (2010) The effect of connective tissue material uncertainties on knee joint mechanics under isolated loading conditions. J Biomech 43(16):3118–3125

    Google Scholar 

  • Donahue TLH, Hull M, Rashid MM, Jacobs CR (2002) A finite element model of the human knee joint for the study of tibio-femoral contact. J Biomech Eng 124(3):273–280

    Google Scholar 

  • Donahue TLH, Hull M, Rashid MM, Jacobs CR (2003) How the stiffness of meniscal attachments and meniscal material properties affect tibio-femoral contact pressure computed using a validated finite element model of the human knee joint. J Biomech 36(1):19–34

    Google Scholar 

  • Fukubayashi T, Torzilli P, Sherman M, Warren R (1982) An in vitro biomechanical evaluation of anterior-posterior motion of the knee. Tibial displacement, rotation, and torque. J Bone Joint Surg 64(2):258–264

    Google Scholar 

  • Gardiner JC, Weiss JA (2003) Subject-specific finite element analysis of the human medial collateral ligament during valgus knee loading. J Orthop Res 21(6):1098–1106

    Google Scholar 

  • Godest A, Beaugonin M, Haug E, Taylor M, Gregson P (2002) Simulation of a knee joint replacement during a gait cycle using explicit finite element analysis. J Biomech 35(2):267–275

    Google Scholar 

  • Gottsauner-Wolf F, Grabowski JJ, Chao E, An K-N (1995) Effects of freeze/thaw conditioning on the tensile properties and failure mode of bone-muscle-bone units: a biomechanical and histological study in dogs. J Orthop Res 13(1):90–95

    Google Scholar 

  • Halloran JP, Petrella AJ, Rullkoetter PJ (2005) Explicit finite element modeling of total knee replacement mechanics. J Biomech 38(2):323–331

    Google Scholar 

  • Halonen K, Mononen M, Jurvelin J, Töyräs J, Salo J, Korhonen R (2014) Deformation of articular cartilage during static loading of a knee joint-experimental and finite element analysis. J Biomech 47(10):2467–2474

    Google Scholar 

  • Hashemi J, Breighner R, Jang T-H, Chandrashekar N, Ekwaro-Osire S, Slauterbeck JR (2010) Increasing pre-activation of the quadriceps muscle protects the anterior cruciate ligament during the landing phase of a jump: an in vitro simulation. The Knee 17(3):235–241

    Google Scholar 

  • Hewett TE, Myer GD, Ford KR, Heidt RS, Colosimo AJ, McLean SG, Van den Bogert AJ, Paterno MV, Succop P (2005) Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes a prospective study. Am J Sports Med 33(4):492–501

    Google Scholar 

  • Hirokawa S, Tsuruno R (2000) Three-dimensional deformation and stress distribution in an analytical/computational model of the anterior cruciate ligament. J Biomech 33(9):1069–1077

    Google Scholar 

  • Huang RY, Zheng HG, Xu Q (2012) Biomechanical evaluation of different techniques in double bundle anterior cruciate ligament reconstruction using finite element analysis. J Biomim Biomater Biomed Eng 13:55

    Google Scholar 

  • Ingram JG, Fields SK, Yard EE, Comstock RD (2008) Epidemiology of knee injuries among boys and girls in us high school athletics. Am J Sports Med 36(6):1116–1122

    Google Scholar 

  • Jurvelin JS, Arokoski JP, Hunziker EB, Helminen HJ (2000) Topographical variation of the elastic properties of articular cartilage in the canine knee. J Biomech 33(6):669–675

    Google Scholar 

  • Kang K-T, Kim S-H, Son J, Lee YH, Chun H-J (2015) In vivo evaluation of the subject-specific finite element model for knee joint cartilage contact area. Int J Precis Eng Manuf 16(6):1171–1177

    Google Scholar 

  • Kessler M, Behrend H, Henz S, Stutz G, Rukavina A, Kuster M (2008) Function, osteoarthritis and activity after acl-rupture: 11 years follow-up results of conservative versus reconstructive treatment. Knee Surg Sports Traumatol Arthrosc 16(5):442–448

    Google Scholar 

  • Kiapour A, Kiapour AM, Kaul V, Quatman CE, Wordeman SC, Hewett TE, Demetropoulos CK, Goel VK (2014a) Finite element model of the knee for investigation of injury mechanisms: development and validation. J Biomech Eng 136(1):011002

    Google Scholar 

  • Kiapour AM, Kaul V, Kiapour A, Quatman CE, Wordeman SC, Hewett TE, Demetropoulos CK, Goel VK (2014b) The effect of ligament modeling technique on knee joint kinematics: a finite element study. Appl Math 4(5A):91

    Google Scholar 

  • Kim HY, Seo Y-J, Kim H-J, Nguyenn T, Shetty NS, Yoo Y-S (2011a) Tension changes within the bundles of anatomic double-bundle anterior cruciate ligament reconstruction at different knee flexion angles: a study using a 3-dimensional finite element model. Arthroscopy 27(10):1400–1408

    Google Scholar 

  • Kim S, Bosque J, Meehan JP, Jamali A, Marder R (2011b) Increase in outpatient knee arthroscopy in the united states: a comparison of national surveys of ambulatory surgery, 1996 and 2006. J Bone Joint Surg 93(11):994–1000

    Google Scholar 

  • Kozanek M, Hosseini A, Liu F, Van de Velde SK, Gill TJ, Rubash HE, Li G (2009) Tibiofemoral kinematics and condylar motion during the stance phase of gait. J Biomech 42(12):1877–1884

    Google Scholar 

  • Krosshaug T, Nakamae A, Boden BP, Engebretsen L, Smith G, Slauterbeck JR, Hewett TE, Bahr R (2007) Mechanisms of anterior cruciate ligament injury in basketball video analysis of 39 cases. Am J Sports Med 35(3):359–367

    Google Scholar 

  • Lawrence RC, Felson DT, Helmick CG, Arnold LM, Choi H, Deyo RA, Gabriel S, Hirsch R, Hochberg MC, Hunder GG et al (2008) Estimates of the prevalence of arthritis and other rheumatic conditions in the united states: part II. Arthr Rheum 58(1):26–35

    Google Scholar 

  • Li G, Gil J, Kanamori A, Woo S-Y (1999) A validated three-dimensional computational model of a human knee joint. J Biomech Eng 121(6):657–662

    Google Scholar 

  • Li G, Suggs J, Gill T (2002) The effect of anterior cruciate ligament injury on knee joint function under a simulated muscle load: a three-dimensional computational simulation. Ann Biomed Eng 30(5):713–720

    Google Scholar 

  • Limbert G, Taylor M, Middleton J (2004) Three-dimensional finite element modelling of the human acl: simulation of passive knee flexion with a stressed and stress-free acl. J Biomech 37(11):1723–1731

    Google Scholar 

  • Lipps DB, Oh YK, Ashton-Miller JA, Wojtys EM (2012) Morphologic characteristics help explain the gender difference in peak anterior cruciate ligament strain during a simulated pivot landing. Am J Sports Med 40(1):32–40

    Google Scholar 

  • Liu F, Kozanek M, Hosseini A, Van de Velde SK, Gill TJ, Rubash HE, Li G (2010) In vivo tibiofemoral cartilage deformation during the stance phase of gait. J Biomech 43(4):658–665

    Google Scholar 

  • Lohmander L, Östenberg A, Englund M, Roos H (2004) High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthr Rheum 50(10):3145–3152

    Google Scholar 

  • Ma J, Arruda EM (2013) A micromechanical viscoelastic constitutive model for native and engineered anterior cruciate ligaments. In: Holzapfel GA, Kuhl E (eds) Computer models in biomechanics. Springer, pp 351–363

  • Maiden NR, Byard RW (2016) Unpredictable tensile strength biomechanics may limit thawed cadaver use for simulant research. Aust J Forensic Sci 48(1):54–58

    Google Scholar 

  • Marchi BC, Arruda EM (2015) An error-minimizing approach to inverse langevin approximations. Rheol Acta 54(11–12):887–902

    Google Scholar 

  • Markolf KL, Mensch J, Amstutz H (1976) Stiffness and laxity of the knee-the contributions of the supporting structures. A quantitative in vitro study. J Bone Joint Surg 58(5):583–594

    Google Scholar 

  • Marouane H, Shirazi-Adl A, Adouni M, Hashemi J (2014) Steeper posterior tibial slope markedly increases acl force in both active gait and passive knee joint under compression. J Biomech 47(6):1353–1359

    Google Scholar 

  • McLean SG, Oh YK, Palmer ML, Lucey SM, Lucarelli DG, Ashton-Miller JA, Wojtys EM (2011) The relationship between anterior tibial acceleration, tibial slope, and acl strain during a simulated jump landing task. J Bone Joint Surg 93(14):1310–1317

    Google Scholar 

  • McLean SG, Mallett KF, Arruda EM (2015) Deconstructing the anterior cruciate ligament: what we know and do not know about function, material properties, and injury mechanics. J Biomech Eng 137(2):020906

    Google Scholar 

  • Mesfar W, Shirazi-Adl A (2005) Biomechanics of the knee joint in flexion under various quadriceps forces. The Knee 12(6):424–434

    Google Scholar 

  • Meyer EG, Haut RC (2008) Anterior cruciate ligament injury induced by internal tibial torsion or tibiofemoral compression. J Biomech 41(16):3377–3383

    Google Scholar 

  • Mootanah R, Imhauser C, Reisse F, Carpanen D, Walker R, Koff M, Lenhoff M, Rozbruch S, Fragomen A, Dewan Z et al (2014) Development and validation of a computational model of the knee joint for the evaluation of surgical treatments for osteoarthritis. Comput Methods Biomech Biomed Eng 17(13):1502–1517

    Google Scholar 

  • Mow VC, Guo XE (2002) Mechano-electrochemical properties of articular cartilage: their inhomogeneities and anisotropies. Ann Rev Biomed Eng 4(1):175–209

    Google Scholar 

  • Mow VC, Holmes MH, Lai WM (1984) Fluid transport and mechanical properties of articular cartilage: a review. J Biomech 17(5):377–394

    Google Scholar 

  • Noyes FR, Grood ES (1976) The strength of the anterior cruciate ligament in humans and rhesus monkeys. J Bone Joint Surg 58(8):1074–1082

    Google Scholar 

  • Oh YK, Lipps DB, Ashton-Miller JA, Wojtys EM (2012) What strains the anterior cruciate ligament during a pivot landing? Am J Sports Med 40(3):574–583

    Google Scholar 

  • Oloyede A, Flachsmann R, Broom ND (1992) The dramatic influence of loading velocity on the compressive response of articular cartilage. Connect Tissue Res 27(4):211–224

    Google Scholar 

  • Pelker RR, Friedlaender GE, Markham TC, Panjabi MM, Moen CJ (1983) Effects of freezing and freeze-drying on the biomechanical properties of rat bone. J Orthop Res 1(4):405–411

    Google Scholar 

  • Pena E, Calvo B, Martinez M, Palanca D, Doblaré M (2005) Finite element analysis of the effect of meniscal tears and meniscectomies on human knee biomechanics. Clin Biomech 20(5):498–507

    Google Scholar 

  • Pena E, Calvo B, Martinez M, Doblare M (2006) A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. J Biomech 39(9):1686–1701

    Google Scholar 

  • Penrose J, Holt G, Beaugonin M, Hose D (2002) Development of an accurate three-dimensional finite element knee model. Comput Methods Biomech Biomed Eng 5(4):291–300

    Google Scholar 

  • Petersson IF, Jacobsson LT (2002) Osteoarthritis of the peripheral joints. Best Pract Res Clin Rheumatol 16(5):741–760

    Google Scholar 

  • Piziali RL, Seering WP, Nagel DA, Schurman DJ (1980) The function of the primary ligaments of the knee in anterior-posterior and medial-lateral motions. J Biomech 13(9):777–784

    Google Scholar 

  • Qian S-H, Ge S-R, Wang Q-L (2006) The frictional coefficient of bovine knee articular cartilage. J Bionic Eng 3(2):79–85

    Google Scholar 

  • Quapp K, Weiss J (1998) Material characterization of human medial collateral ligament. J Biomech Eng 120(6):757–763

    Google Scholar 

  • Quatman CE, Kiapour A, Myer GD, Ford KR, Demetropoulos CK, Goel VK, Hewett TE (2011) Cartilage pressure distributions provide a footprint to define female anterior cruciate ligament injury mechanisms. Am J Sports Med 39(8):1706–1713

    Google Scholar 

  • Ramaniraka N, Saunier P, Siegrist O, Pioletti DP (2007) Biomechanical evaluation of intra-articular and extra-articular procedures in anterior cruciate ligament reconstruction: a finite element analysis. Clin Biomech 22(3):336–343

    Google Scholar 

  • Shelburne KB, Torry MR, Pandy MG (2005) Muscle, ligament, and joint-contact forces at the knee during walking. Med Sci Sports Exerc 37(11):1948

    Google Scholar 

  • Shelburne KB, Torry MR, Pandy MG (2006) Contributions of muscles, ligaments, and the ground-reaction force to tibiofemoral joint loading during normal gait. J Orthop Res 24(10):1983–1990

    Google Scholar 

  • Shin CS, Chaudhari AM, Andriacchi TP (2007) The influence of deceleration forces on acl strain during single-leg landing: a simulation study. J Biomech 40(5):1145–1152

    Google Scholar 

  • Shirazi R, Shirazi-Adl A (2009a) Analysis of partial meniscectomy and acl reconstruction in knee joint biomechanics under a combined loading. Clin Biomech 24(9):755–761

    Google Scholar 

  • Shirazi R, Shirazi-Adl A (2009b) Computational biomechanics of articular cartilage of human knee joint: effect of osteochondral defects. J Biomech 42(15):2458–2465

    Google Scholar 

  • Skaggs D, Warden W, Mow V (1994) Radial tie fibers influence the tensile properties of the bovine medial meniscus. J Orthop Res 12(2):176–185

    Google Scholar 

  • Song Y, Debski RE, Musahl V, Thomas M, Woo SL-Y (2004) A three-dimensional finite element model of the human anterior cruciate ligament: a computational analysis with experimental validation. J Biomech 37(3):383–390

    Google Scholar 

  • Spindler KP, Wright RW (2008) Anterior cruciate ligament tear. N Engl J Med 359(20):2135–2142

    Google Scholar 

  • Stemper BD, Yoganandan N, Stineman MR, Gennarelli TA, Baisden JL, Pintar FA (2007) Mechanics of fresh, refrigerated, and frozen arterial tissue. J Surg Res 139(2):236–242

    Google Scholar 

  • Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    MathSciNet  MATH  Google Scholar 

  • Swann A, Seedhom B (1993) The stiffness of normal articular cartilage and the predominant acting stress levels: implications for the aetiology of osteoarthrosis. Rheumatology 32(1):16–25

    Google Scholar 

  • Thambyah A, Nather A, Goh J (2006) Mechanical properties of articular cartilage covered by the meniscus. Osteoarthr Cartil 14(6):580–588

    Google Scholar 

  • Tissakht M, Ahmed A (1995) Tensile stress-strain characteristics of the human meniscal material. J Biomech 28(4):411–422

    Google Scholar 

  • Unsworth A, Dowson D, Wright V (1975) The frictional behavior of human synovial jointspart i: natural joints. J Tribol 97(3):369–376

    Google Scholar 

  • Villegas DF, Maes JA, Magee SD, Donahue TLH (2007) Failure properties and strain distribution analysis of meniscal attachments. J Biomech 40(12):2655–2662

    Google Scholar 

  • Wall SJ, Rose DM, Sutter EG, Belkoff SM, Boden BP (2012) The role of axial compressive and quadriceps forces in noncontact anterior cruciate ligament injury a cadaveric study. Am J Sports Med 40(3):568–573

    Google Scholar 

  • Wang Y, Fan Y, Zhang M (2014) Comparison of stress on knee cartilage during kneeling and standing using finite element models. Med Eng Phys 36(4):439–447

    Google Scholar 

  • Weiss JA, Gardiner JC, Ellis BJ, Lujan TJ, Phatak NS (2005) Three-dimensional finite element modeling of ligaments: technical aspects. Med Eng Phys 27(10):845–861

    Google Scholar 

  • Withrow TJ, Huston LJ, Wojtys EM, Ashton-Miller JA (2006) The relationship between quadriceps muscle force, knee flexion, and anterior cruciate ligament strain in an in vitro simulated jump landing. Am J Sports Med 34(2):269–274

    Google Scholar 

  • Wittek A, Grosland NM, Joldes GR, Magnotta V, Miller K (2015) From finite element meshes to clouds of points: a review of methods for generation of computational biomechanics models for patient-specific applications. Ann Biomed Eng 44:1–13

    Google Scholar 

  • Wong BL, Sah RL (2010) Effect of a focal articular defect on cartilage deformation during patello-femoral articulation. J Orthop Res 28(12):1554–1561

    Google Scholar 

  • Woo SL-Y, Orlando CA, Camp JF, Akeson WH (1986) Effects of postmortem storage by freezing on ligament tensile behavior. J Biomech 19(5):399–404

    Google Scholar 

  • Wright RW, Preston E, Fleming BC, Amendola A, Andrish JT, Bergfeld JA, Dunn WR, Kaeding C, Kuhn JE, Marx RG et al (2008) A systematic review of anterior cruciate ligament reconstruction rehabilitation: part ii: open versus closed kinetic chain exercises, neuromuscular electrical stimulation, accelerated rehabilitation, and miscellaneous topics. J Knee Surg 21(3):225–234

    Google Scholar 

  • Xie F, Yang L, Guo L, Wang Z-J, Dai G (2009) A study on construction three-dimensional nonlinear finite element model and stress distribution analysis of anterior cruciate ligament. J Biomech Eng 131(12):121007

    Google Scholar 

  • Yamamoto K, Hirokawa S, Kawada T (1998) Strain distribution in the ligament using photoelasticity. a direct application to the human acl. Med Eng Phys 20(3):161–168

    Google Scholar 

  • Young AA, Appleyard RC, Smith MM, Melrose J, Little CB (2007) Dynamic biomechanics correlate with histopathology in human tibial cartilage: a preliminary study. Clin Orthop Relat Res 462:212–220

    Google Scholar 

  • Zhang X, Jiang G, Wu C, Woo SL (2008) A subject-specific finite element model of the anterior cruciate ligament. In: Engineering in medicine and biology society, 2008. EMBS 2008. 30th annual international conference of the IEEE. IEEE, pp 891–894

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin C. Marchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchi, B.C., Arruda, E.M. A study on the role of articular cartilage soft tissue constitutive form in models of whole knee biomechanics. Biomech Model Mechanobiol 16, 117–138 (2017). https://doi.org/10.1007/s10237-016-0805-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-016-0805-2

Keywords

Navigation