Skip to main content
Log in

Design and validation of a biomechanical bioreactor for cartilage tissue culture

  • Short Communication
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Specific tissues, such as cartilage, undergo mechanical solicitation under their normal performance in human body. In this sense, it seems necessary that proper tissue engineering strategies of these tissues should incorporate mechanical solicitations during cell culture, in order to properly evaluate the influence of the mechanical stimulus. This work reports on a user-friendly bioreactor suitable for applying controlled mechanical stimulation—amplitude and frequency—to three-dimensional scaffolds. Its design and main components are described, as well as its operation characteristics. The modular design allows easy cleaning and operating under laminar hood. Different protocols for the sterilization of the hermetic enclosure are tested and ensure lack of observable contaminations, complying with the requirements to be used for cell culture. The cell viability study was performed with KUM5 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Angele P, Yoo JU, Smith C, Mansour J, Jepsen KJ, Nerlich M, Johnstone B (2003) Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiated in vitro. J Orthop Res 21:451–457. doi:10.1016/s0736-0266(02)00230-9

    Article  Google Scholar 

  • Bian L, Zhai DY, Zhang EC, Mauck RL, Burdick JA (2012) Dynamic compressive loading enhances cartilage matrix synthesis and distribution and suppresses hypertrophy in hMSC-laden hyaluronic acid hydrogels. Tissue Eng A 18:715–724. doi:10.1089/ten.TEA.2011.0455

    Article  Google Scholar 

  • De Croos JN, Dhaliwal SS, Grynpas MD, Pilliar RM, Kandel RA (2006) Cyclic compressive mechanical stimulation induces sequential catabolic and anabolic gene changes in chondrocytes resulting in increased extracellular matrix accumulation. Matrix Biol 25:323–331. doi:10.1016/j.matbio.2006.03.005

    Article  Google Scholar 

  • Demarteau O, Wendt D, Braccini A, Jakob M, Schafer D, Heberer M, Martin I (2003) Dynamic compression of cartilage constructs engineered from expanded human articular chondrocytes. Biochem Biophys Res Commun 310:580–588. doi:10.1016/j.bbrc.2003.09.099

    Article  Google Scholar 

  • Goncalves A, Costa P, Rodrigues MT, Dias IR, Reis RL, Gomes ME (2011) Effect of flow perfusion conditions in the chondrogenic differentiation of bone marrow stromal cells cultured onto starch based biodegradable scaffolds. Acta Biomater 7:1644–1652. doi:10.1016/j.actbio.2010.11.044

    Article  Google Scholar 

  • Huang AH, Farrell MJ, Kim M, Mauck RL (2010a) Long-term dynamic loading improves the mechanical properties of chondrogenic mesenchymal stem cell-laden hydrogel. Eur Cells Mater 19:72–85

    Google Scholar 

  • Huang AH, Farrell MJ, Mauck RL (2010b) Mechanics and mechanobiology of mesenchymal stem cell-based engineered cartilage. J Biomech 43:128–136. doi:10.1016/j.jbiomech.2009.09.018

    Article  Google Scholar 

  • Kelly DJ, Jacobs CR (2010) The role of mechanical signals in regulating chondrogenesis and osteogenesis of mesenchymal stem cells. Birth Defects Res C Embryo Today 90:75–85. doi:10.1002/bdrc.20173

  • Li Z, Yao SJ, Alini M, Stoddart MJ (2010) Chondrogenesis of human bone marrow mesenchymal stem cells in fibrin-polyurethane composites is modulated by frequency and amplitude of dynamic compression and shear stress. Tissue Eng A 16:575–584. doi:10.1089/ten.TEA.2009.0262

    Article  Google Scholar 

  • Lima EG, Bian L, Ng KW, Mauck RL, Byers BA, Tuan RS, Ateshian GA, Hung CT (2007) The beneficial effect of delayed compressive loading on tissue-engineered cartilage constructs cultured with TGF-beta3. Osteoarthr Cartil 15:1025–1033. doi:10.1016/j.joca.2007.03.008

    Article  Google Scholar 

  • Mahmoudifar N, Doran PM (2010) Chondrogenic differentiation of human adipose-derived stem cells in polyglycolic acid mesh scaffolds under dynamic culture conditions. Biomaterials 31:3858–3867. doi:10.1016/j.biomaterials.2010.01.090

    Article  Google Scholar 

  • Miyanishi K, Trindade MC, Lindsey DP, Beaupré GS, Carter DR, Goodman SB, Schurman DJ, Smith RL (2006) Effects of hydrostatic pressure and transforming growth factor-beta 3 on adult human mesenchymal stem cell chondrogenesis in vitro. Tissue Eng 12:1419–1428. doi:10.1089/ten.2006.12.1419

    Article  Google Scholar 

  • Nicodemus GD, Bryant SJ (2008) The role of hydrogel structure and dynamic loading on chondrocyte gene expression and matrix formation. J Biomech 41:1528–1536. doi:10.1016/j.jbiomech.2008.02.034

    Article  Google Scholar 

  • Obradovic B, Carrier RL, Vunjak-Novakovic G, Freed LE (1999) Gas exchange is essential for bioreactor cultivation of tissue engineered cartilage. Biotechnol Bioeng 63:197–205. doi:10.1002/(SICI)1097-0290(19990420)63:23.0.CO;2-2

    Article  Google Scholar 

  • Panadero JA, Sencadas V, Silva SC, Ribeiro C, Correia V, Gama FM, Gomez Ribelles JL, Lanceros-Mendez S (2015) Mechanical fatigue performance of PCL-chondroprogenitor constructs after cell culture under bioreactor mechanical stimulus. J Biomed Mater Res B. doi:10.1002/jbm.b.33386

  • Panadero JA, Vikingsson L, Gomez Ribelles JL, Sencadas V, Lanceros-Mendez S (2013) Fatigue prediction in fibrin poly-epsilon-caprolactone macroporous scaffolds. J Mech Behav Biomed Mater 28:55–61. doi:10.1016/j.jmbbm.2013.07.011

    Article  Google Scholar 

  • Steinmeyer J, Knue S (1997) The proteoglycan metabolism of mature bovine articular cartilage explants superimposed to continuously applied cyclic mechanical loading. Biochem Biophys Res Commun 240:216–221. doi:10.1006/bbrc.1997.7641

    Article  Google Scholar 

  • Sugiki T, Uyama T, Toyoda M, Morioka H, Kume S, Miyado K, Matsumoto K, Saito H, Tsumaki N, Takahashi Y, Toyama Y, Umezawa A (2007) Hyaline cartilage formation and enchondral ossification modeled with KUM5 and OP9 chondroblasts. J Cell Biochem 100:1240–1254. doi:10.1002/jcb.21125

    Article  Google Scholar 

  • Thorpe SD, Buckley CT, Steward AJ, Kelly DJ (2012) The external mechanical environment can override the influence of local substrate in determining stem cell fate. J Biomech 45:2483–2492. doi:10.1016/j.jbiomech.2012.07.024

    Article  Google Scholar 

  • Thorpe SD, Buckley CT, Vinardell T, O’Brien FJ, Campbell VA, Kelly DJ (2008) Dynamic compression can inhibit chondrogenesis of mesenchymal stem cells. Biochem Biophys Res Commun 377:458–462. doi:10.1016/j.bbrc.2008.09.154

    Article  Google Scholar 

  • Vinardell T, Rolfe RA, Buckley CT, Meyer EG, Ahearne M, Murphy P, Kelly DJ (2012) Hydrostatic pressure acts to stabilise a chondrogenic phenotype in porcine joint tissue derived stem cells. Eur Cells Mater 23:121–134

    Google Scholar 

  • Wong M, Carter DR (2003) Articular cartilage functional histomorphology and mechanobiology: a research perspective. Bone 33:1–13. doi:10.1016/S8756-3282(03)00083-8

    Article  Google Scholar 

  • Wong M, Wuethrich P, Buschmann MD, Eggli P, Hunziker E (1997) Chondrocyte biosynthesis correlates with local tissue strain in statically compressed adult articular cartilage. J Orthop Res 15:189–196. doi:10.1002/jor.1100150206

  • Xie L, Zhang N, Marsano A, Vunjak-Novakovic G, Zhang Y, Lopez MJ (2013) In vitro mesenchymal trilineage differentiation and extracellular matrix production by adipose and bone marrow derived adult equine multipotent stromal cells on a collagen scaffold. Stem Cell Rev 9:858–872. doi:10.1007/s12015-013-9456-1

  • Zeiter S, Lezuo P, Ito K (2009) Effect of TGF beta1, BMP-2 and hydraulic pressure on chondrogenic differentiation of bovine bone marrow mesenchymal stromal cells. Biorheology 46:45–55. doi:10.3233/bir-2009-0520

    Google Scholar 

Download references

Acknowledgments

This work was funded by FEDER funds through the “Programa Operacional Fatores de Competitividade—COMPETE” and by national funds arranged by FCT—Fundação para a Ciência e a Tecnologia, project reference PEST-C/FIS/UI607/2014. The authors also thank funding from Matepro—Optimizing Materials and Processes”, ref. NORTE-07-0124-FEDER-000037”, co-funded by the “Programa Operacional Regional do Norte” (ON.2—O Novo Norte), under the “Quadro de Referência Estratégico Nacional” (QREN), through the “Fundo Europeu de Desenvolvimento Regional” (FEDER). JAP, VS, CR and VC thank the FCT for the SFRH/BD/64586/2009 and SFRH/BPD/63148/2009, SFRH/BPD/90870/2012, and SFRH/BPD/97739/2013 grants, respectively. This work was funded also by the Spanish Ministry of Economy and Copetitiveness (MINECO) through the project MAT2013-46467-C4-1-R (including the FEDER financial support). CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008–2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Ribeiro or S. Lanceros-Méndez.

Ethics declarations

Declaration statement

The authors declare no competing interest and that all sources of funding are provided in the Acknowledgment section. Further, the study does not involve human subjects, uses commercial cell lines, and no further ethical approval is needed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Correia, V., Panadero, J.A., Ribeiro, C. et al. Design and validation of a biomechanical bioreactor for cartilage tissue culture. Biomech Model Mechanobiol 15, 471–478 (2016). https://doi.org/10.1007/s10237-015-0698-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-015-0698-5

Keywords

Navigation