Skip to main content
Log in

Biomechanical imaging of cell stiffness and prestress with subcellular resolution

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Knowledge of cell mechanical properties, such as elastic modulus, is essential to understanding the mechanisms by which cells carry out many integrated functions in health and disease. Cellular stiffness is regulated by the composition, structural organization, and indigenous mechanical stress (or prestress) borne by the cytoskeleton. Current methods for measuring stiffness and cytoskeletal prestress of living cells necessitate either limited spatial resolution but with high speed, or spatial maps of the entire cell at the expense of long imaging times. We have developed a novel technique, called biomechanical imaging, for generating maps of both cellular stiffness and prestress that requires less than 30 s of interrogation time, but which provides subcellular spatial resolution. The technique is based on the ability to measure tractions applied to the cell while simultaneously observing cell deformation, combined with capability to solve an elastic inverse problem to find cell stiffness and prestress distributions. We demonstrated the application of this technique by carrying out detailed mapping of the shear modulus and cytoskeletal prestress distributions of 3T3 fibroblasts, making no assumptions regarding those distributions or the correlation between them. We also showed that on the whole cell level, the average shear modulus is closely associated with the average prestress, which is consistent with the data from the literature. Data collection is a straightforward procedure that lends itself to other biochemical/biomechanical interventions. Biomechanical imaging thus offers a new tool that can be used in studies of cell biomechanics and mechanobiology where fast imaging of cell properties and prestress is desired at subcellular resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barbone PE, Gokhale NH (2004) Elastic modulus imaging: on the uniqueness and nonuniqueness of the elastography inverse problem in two dimensions. Inverse Probl 20(1):283–296

    Article  MATH  MathSciNet  Google Scholar 

  • Barbone PE, Oberai AA (2007) Elastic modulus imaging: some exact solutions of the compressible elastography inverse problem. Phys Med Biol 52(6):1577–1593. doi:10.1088/0031-9155/52/6/003

    Article  Google Scholar 

  • Barbone PE, Oberai AA (2010) A review of the mathematical and computational foundations of biomechanical imaging. computational modeling in biomechanics 375–408. doi:10.1007/978-90-481-3575-2_13

  • Butler JP, Tolic-Norrelykke IM, Fabry B, Fredberg JJ (2002) Traction fields, moments, and strain energy that cells exert on their surroundings. Am J Physiol Cell Physiol 282(3):C595–C605. doi:10.1152/ajpcell.00270.2001

    Article  Google Scholar 

  • Byrd RH, Lu PH, Nocedal J, Zhu CY (1995) A limited memory algorithm for bound constrained optimization. Siam J Sci Comput 16(5):1190–1208. doi:10.1137/0916069

    Article  MATH  MathSciNet  Google Scholar 

  • Chen C, Krishnan R, Zhou E, Ramachandran A, Tambe D, Rajendran K, Adam RM, Deng L, Fredberg JJ (2010) Fluidization and resolidification of the human bladder smooth muscle cell in response to transient stretch. PloS one 5(8):e12035. doi:10.1371/journal.pone.0012035

    Article  Google Scholar 

  • Dembo M, Wang YL (1999) Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys J 76(4):2307–2316. doi:10.1016/S0006-3495(99)77386-8

    Article  Google Scholar 

  • Fernandez P, Pullarkat PA, Ott A (2006) A master relation defines the nonlinear viscoelasticity of single fibroblasts. Biophys J 90(10):3796–3805. doi:10.1529/biophysj.105.072215

    Article  Google Scholar 

  • Gao L, Parker KJ, Lerner RM, Levinson SF (1996) Imaging of the elastic properties of tissue-a review. Ultrasound Med Biol 22(8):959–977

    Article  Google Scholar 

  • Goenezen S, Barbone P, Oberai AA (2011) Solution of the nonlinear elasticity imaging inverse problem: the incompressible case. Comput Methods Appl Mech Eng 200(13–16):1406–1420. doi:10.1016/j.cma.2010.12.018

    Article  MATH  MathSciNet  Google Scholar 

  • Gonzalez-Cruz RD, Fonseca VC, Darling EM (2012) Cellular mechanical properties reflect the differentiation potential of adipose-derived mesenchymal stem cells. Proc Nat Acad Sci USA 109(24):E1523–1529. doi:10.1073/pnas.1120349109

    Article  Google Scholar 

  • Greenleaf JF, Fatemi M, Insana M (2003) Selected methods for imaging elastic properties of biological tissues. Ann Rev Biomed Eng 5:57–78. doi:10.1146/annurev.bioeng.5.040202.121623

    Article  Google Scholar 

  • Guo Q, Xia Y, Sandig M, Yang J (2012) Characterization of cell elasticity correlated with cell morphology by atomic force microscope. J Biomech 45(2):304–309. doi:10.1016/j.jbiomech.2011.10.031

    Article  Google Scholar 

  • Heidemann SR, Wirtz D (2004) Towards a regional approach to cell mechanics. Trends Cell Biol 14(4):160–166. doi:10.1016/j.tcb.2004.02.003

    Article  Google Scholar 

  • Hoffman BD, Crocker JC (2009) Cell mechanics: dissecting the physical responses of cells to force. Ann Rev Biomed Eng 11:259–288. doi:10.1146/annurev.bioeng.10.061807.160511

    Article  Google Scholar 

  • Hu S, Chen J, Fabry B, Numaguchi Y, Gouldstone A, Ingber DE, Fredberg JJ, Butler JP, Wang N (2003) Intracellular stress tomography reveals stress focusing and structural anisotropy in cytoskeleton of living cells. Am J Physiol Cell Physiol 285(5):C1082–1090. doi:10.1152/ajpcell.00159.2003

    Article  Google Scholar 

  • Hubmayr RD, Shore SA, Fredberg JJ, Planus E, Panettieri RA Jr, Moller W, Heyder J, Wang N (1996) Pharmacological activation changes stiffness of cultured human airway smooth muscle cells. Am J Physiol Cell Physiol 271(5 Pt 1):C1660–1668

    Google Scholar 

  • Ingber DE (1993) Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. J Cell Sci 104(Pt 3):613–627

    Google Scholar 

  • Janmey PA, McCulloch CA (2007) Cell mechanics: integrating cell responses to mechanical stimuli. Ann Rev Biomed Eng 9(1):1–34

    Article  Google Scholar 

  • Kole TP, Tseng Y, Jiang I, Katz JL, Wirtz D (2005) Intracellular mechanics of migrating fibroblasts. Mol Biol Cell 16(1):328–338. doi:10.1091/mbc.E04-06-0485

    Google Scholar 

  • Krishnan R, Park CY, Lin YC, Mead J, Jaspers RT, Trepat X, Lenormand G, Tambe D, Smolensky AV, Knoll AH, Butler JP, Fredberg JJ (2009) Reinforcement versus fluidization in cytoskeletal mechanoresponsiveness. PloS one 4(5):e5486. doi:10.1371/journal.pone.0005486

    Article  Google Scholar 

  • Lam RH, Weng S, Lu W, Fu J (2012) Live-cell subcellular measurement of cell stiffness using a microengineered stretchable micropost array membrane. Int Biol Quant Biosci Nano Macro 4(10):1289–1298. doi:10.1039/c2ib20134h

    Google Scholar 

  • Mahaffy RE, Park S, Gerde E, Kas J, Shih CK (2004) Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy. Biophys J 86(3):1777–1793. doi:10.1016/S0006-3495(04)74245-9

    Article  Google Scholar 

  • Maloney JM, Walton EB, Bruce CM, Van Vliet KJ (2008) Influence of finite thickness and stiffness on cellular adhesion-induced deformation of compliant substrata. Phys Rev E Stat Nonlinear Soft Matter Phys 78(4 Pt 1):041923

    Article  Google Scholar 

  • Muthupillai R, Lomas DJ, Rossman PJ, Greenleaf JF, Manduca A, Ehman RL (1995) Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science (New York, NY) 269(5232):1854–1857

    Article  Google Scholar 

  • Nelson CM, Jean RP, Tan JL, Liu WF, Sniadecki NJ, Spector AA, Chen CS (2005) From the cover: emergent patterns of growth controlled by multicellular form and mechanics. Proc Nat Acad Sci USA 102(33):11594–11599

    Article  Google Scholar 

  • Oberai AA, Gokhale NH, Doyley MM, Bamber JC (2004) Evaluation of the adjoint equation based algorithm for elasticity imaging. Phys Med Biol 49(13):2955–2974

    Article  Google Scholar 

  • Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X (1991) Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging 13(2):111–134

    Article  Google Scholar 

  • Ophir J, Alam SK, Garra B, Kallel F, Konofagou E, Krouskop T, Varghese T (1999) Elastography: ultrasonic estimation and imaging of the elastic properties of tissues. Proc Inst Mech Eng Part H J Eng Med 213(3):203–233

    Article  Google Scholar 

  • Park S, Koch D, Cardenas R, Kas J, Shih CK (2005) Cell motility and local viscoelasticity of fibroblasts. Biophys J 89(6):4330–4342. doi:10.1529/biophysj.104.053462

    Article  Google Scholar 

  • Park CY, Tambe D, Alencar AM, Trepat X, Zhou EH, Millet E, Butler JP, Fredberg JJ (2010) Mapping the cytoskeletal prestress. Am J Physiol Cell Physiol 298(5):C1245–1252. doi:10.1152/ajpcell.00417.2009

    Article  Google Scholar 

  • Parker KJ, Gao L, Lerner RM, Levinson SF (1996) Techniques for elastic imaging: a review. IEEE Eng Med Biol Mag 15:52–59

    Article  Google Scholar 

  • Parker KJ, Taylor LS, Gracewski S, Rubens DJ (2005) A unified view of imaging the elastic properties of tissue. J Acoust Soc Am 117(5):2705–2712

    Article  Google Scholar 

  • Parker KJ, Doyley MM, Rubens DJ (2011) Imaging the elastic properties of tissue: the 20 year perspective. Phys Med Biol 56(1):R1–R29. doi:10.1088/00319155/56/1/R01

    Article  Google Scholar 

  • Persson PO, Strang G (2004) A simple mesh generator in MATLAB. Siam Rev 46(2):329–345. doi:10.1137/S0036144503429121

    Article  MATH  MathSciNet  Google Scholar 

  • Plodinec M, Loparic M, Monnier CA, Obermann EC, Zanetti-Dallenbach R, Oertle P, Hyotyla JT, Aebi U, Bentires-Alj M, Lim RY, Schoenenberger CA (2012) The nanomechanical signature of breast cancer. Nat Nanotechnol 7(11):757–765. doi:10.1038/nnano.2012.167

    Article  Google Scholar 

  • Polio SR, Rothenberg KE, Stamenović D, Smith ML (2012) A micropatterning and image processing approach to simplify measurement of cellular traction forces. Acta Biomater 8(1):82–88. doi:10.1016/j.actbio.2011.08.013

    Article  Google Scholar 

  • Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112(4):453 –465 doi10.1016/S0092-8674(03)00120-X

    Google Scholar 

  • Pourati J, Maniotis A, Spiegel D, Schaffer JL, Butler JP, Fredberg JJ, Ingber DE, Stamenović D, Wang N (1998) Is cytoskeletal tension a major determinant of cell deformability in adherent endothelial cells? Am J Physiol Cell Physiol 274(5):C1283–C1289

    Google Scholar 

  • Riveline D, Zamir E, Balaban NQ, Schwarz US, Ishizaki T, Narumiya S, Kam Z, Geiger B, Bershadsky AD (2001) Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J Cell Biol 153(6):1175–1186

    Google Scholar 

  • Seifriz W (1924) An elastic value of protoplasm, with further observations on the viscosity of protoplasm. J Exp Biol 2(1):1–11

    Google Scholar 

  • Smith BA, Tolloczko B, Martin JG, Grutter P (2005) Probing the viscoelastic behavior of cultured airway smooth muscle cells with atomic force microscopy: stiffening induced by contractile agonist. Biophys J 88(4):2994–3007. doi:10.1529/biophysj.104.046649

    Article  Google Scholar 

  • Solon J, Levental I, Sengupta K, Georges PC, Janmey PA (2007) Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophys J 93(12):4453–4461

    Article  Google Scholar 

  • Stamenović D, Ingber DE (2002) Models of cytoskeletal mechanics of adherent cells. Biomech Model Mechanobiol 1(1):95–108. doi:10.1007/s10237-002-0009-9

    Article  Google Scholar 

  • Stamenović D, Suki B, Fabry B, Wang N, Fredberg JJ (2004) Rheology of airway smooth muscle cells is associated with cytoskeletal contractile stress. J Appl Physiol 96(5):1600–1605. doi:10.1152/japplphysiol.00595.2003

    Article  Google Scholar 

  • Tambe DT, Croutelle U, Trepat X, Park CY, Kim JH, Millet E, Butler JP, Fredberg JJ (2013) Monolayer stress microscopy: limitations, artifacts, and accuracy of recovered intercellular stresses. PloS one 8(2):e55172. doi:10.1371/journal.pone.0055172PONE-D-12-23633

    Article  Google Scholar 

  • Tan JL, Tien J, Pirone DM, Gray DS, Bhadriraju K, Chen CS (2003) Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc Nat Acad Sci USA 100(4):1484–1489. doi:10.1073/pnas.0235407100

    Article  Google Scholar 

  • Trepat X, Wasserman MR, Angelini TE, Millet E, Weitz DA, Butler JP, Fredberg JJ (2009) Physical forces during collective cell migration. Nat Phys 5(6):426–430. doi:10.1038/Nphys1269

    Article  Google Scholar 

  • Wang N, Tolic-Norrelykke IM, Chen J, Mijailovich SM, Butler JP, Fredberg JJ, Stamenović D (2002) Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. Am J Physiol Cell Physiol 282(3):C606–616. doi:10.1152/ajpcell.00269.2001

    Google Scholar 

  • Wang N, Naruse K, Stamenović D, Fredberg JJ, Mijailovich SM, Tolic-Norrelykke IM, Polte T, Mannix R, Ingber DE (2001) Mechanical behavior in living cells consistent with the tensegrity model. Proc Nat Acad Sci USA 98:7765–7770

    Article  Google Scholar 

  • Wirtz D (2009) Particle-tracking microrheology of living cells: principles and applications. Ann Rev Biophys 38:301–326. doi:10.1146/annurev.biophys.050708.133724

    Article  Google Scholar 

  • Zheng XY, Zhang X (2008) Optical moire as a visualization tool for living vascular cell contraction force mapping. Appl Phys Lett 93(16). doi:10.1063/1.3006430

Download references

Acknowledgments

This study was funded by NSF CBET Grant 1150467 and an Innovation Career Development Professorship from Boston University (MLS), NHLBI Grant HL-096005 (DS), NCI-R01CA140271 (PEB, AAO), and NSF SI2 Grant #1148111 (PEB, AAO).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paul E. Barbone, Dimitrije Stamenović or Michael L. Smith.

Additional information

Elizabeth P. Canović and D. Thomas Seidl have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 7533 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canović, E.P., Seidl, D.T., Polio, S.R. et al. Biomechanical imaging of cell stiffness and prestress with subcellular resolution. Biomech Model Mechanobiol 13, 665–678 (2014). https://doi.org/10.1007/s10237-013-0526-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-013-0526-8

Keywords

Navigation