Skip to main content

Advertisement

Log in

A 1/8° coupled biochemical-physical Indian Ocean Regional Model: Physical results and validation

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

A coupled physical-biochemical Indian Ocean Regional Model (IORM), based on the Navy Coastal Ocean Model (NCOM) and the Carbon Silicate Nitrogen Ecosystem (CoSiNE) model was configured with the primary objective of providing an accurate estimate of the oceanic physical state along with the biochemical processes simulated by CoSiNE to understand the variability in the Indian Ocean (IO). The model did not assimilate any data; instead, weak relaxation of temperature and salinity was implemented to keep the model stable in the long-term simulations. In this study, the skill of the IORM in simulating physical states in the IO was evaluated. Basin-scale surface circulation and cross-sectional transports were compared to observations, which demonstrated that the model replicated most of the observed features with reasonably good accuracy. Consistency and biases in the upper ocean temperature, salinity, and mixed layer depth were also analyzed. Lastly, the seasonality in the IO, its response to monsoonal forcing, and the evolution and dynamics of surface and subsurface dipole events were examined. The IORM reproduced most of the dynamic features including Ekman pumping, wave propagation, and climate variability at both annual and interannual time scales. The internal ocean dynamics and behavior of the modeled sea surface temperature anomaly (SSTA) suggest a coupled ocean/atmosphere instability that will require further research, including sensitivity experiments to realize improvements in model parameterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Barron CN, Kara AB, Martin PJ, Rhodes RC, Smedstad LF (2006) Formulation, implementation and examination of vertical coordinate choices in the Global Navy Coastal Ocean Model (NCOM). Ocean Model 11(3):347–375

    Article  Google Scholar 

  • Beal LM, Hormann V, Lumpkin R, Foltz GR (2013) The response of the surface circulation of the Arabian Sea to monsoonal forcing. J Phys Oceanogr 43(9):2008–2022

  • Bonjean F, Lagerloef GSE (2002) Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean. J Phys Oceanogr 32:2938–2954

    Article  Google Scholar 

  • Bray NA, Wijffels SE, Chong JC, Fieux M, Hautala S, Meyers G, Morawitz WML (1997) Characteristics of the Indo-Pacific through flow in the eastern Indian Ocean. Geophys Res Lett 24:2569–2572

  • Carnes MR (2009) Description and evaluation of GDEM-V 3.0. NRL Tech Report. NRL/MR/7330-09-9165

  • Chai F, Dugdale RC, Peng T-H, Wilkerson FP, Barber RT (2002) One-dimensional ecosystem model of the equatorial Pacific upwelling system, part I: model development and silicon and nitrogen cycle. Deep-Sea Res II 49(13–14):2713–2745

    Article  Google Scholar 

  • de Ruijter WP, Ridderinkhof H, Lutjeharms JR, Schouten MW, Veth C (2002) Observations of the flow in the Mozambique Channel. Geophys Res Lett 29(10):140–1

    Article  Google Scholar 

  • Deser C, Alexander MA, Xie S-P, Phillips AS (2010) Sea surface temperature variability: patterns and mechanisms. Annu Rev Mar Sci 2:115–143

  • Domingues CM, Maltrud ME, Wijffels SE, Church JA, Tomczak M (2007) Simulated Lagrangian pathways between the Leeuwin Current System and the upper-ocean circulation of the southeast Indian Ocean. Deep-Sea Res II 54:797–817

    Article  Google Scholar 

  • Du Y, Xie S-P, Hu K, Huang G (2009) Role of air-sea interaction in the long persistence of El Niño-induced North Indian Ocean warming. J Clim 22:2023–2038

    Article  Google Scholar 

  • Du Y, Cai W, Wu Y (2013a) A new type of the Indian Ocean Dipole since the mid-1970s. J Clim 26:959–972

    Article  Google Scholar 

  • Du Y, Xie S-P, Yang Y-L, Zheng X-T, Liu L, Huang G (2013b) Indian Ocean variability in the CMIP5 multi-model ensemble: the basin mode. J Clim 26:7240–7266

    Article  Google Scholar 

  • Du Y, Zhang Y-H (2015) Satellite and Argo observed surface salinity variations in the tropical Indian Ocean and their association with the Indian Ocean Dipole mode. J Clim 28:695–713. doi:10.1175/JCLI-D-14-00435.1

    Article  Google Scholar 

  • Dugdale RC, Barber RT, Chai F, Peng T-H, Wilkerson FP (2002) One-dimensional ecosystem model of the equatorial Pacific upwelling system. Part II: sensitivity analysis and comparison with JGOFS EqPac data. Deep-Sea Res II 49(13–14):2747–2768

    Article  Google Scholar 

  • Feng M, Meyers G, Wijffels S (2001) Interannual upper ocean variability in the tropical Indian Ocean. Geophys Res Lett 28(21):4151–4154

    Article  Google Scholar 

  • Feng M, Meyers G (2003) Interannual variability in the tropical Indian Ocean: a two-year time-scale of Indian Ocean Dipole. Deep-Sea Res II 50(12):2263–2284

    Article  Google Scholar 

  • Foltz GR, Vialard J, Kumar BP, McPhaden MJ (2010) Seasonal mixed layer heat balance of the southwestern tropical Indian Ocean. J Clim 23:947–965

    Article  Google Scholar 

  • Garternicht U, Schott F (1997) Heat fluxes of the Indian Ocean from a global eddy-resolving model. J Geophys Res 102:21147–21159

    Article  Google Scholar 

  • Goes JI, Thoppil PG, Gomes HR, Fasullo JT (2005) Warming of the Eurasian landmass is making the Arabian Sea more productive. Science 308:545–547

    Article  Google Scholar 

  • Gordon AL, Ma S, Olson DB, Hacke P, Ffield A, Talley LD, Wilson D, Baringer M (1997) Advection and diffusion of Indonesian throughflow water within the Indian Ocean South Equatorial Current. Geophys Res Lett 24(21):2573–2576

  • Han W, McCreary JP, Kohler KE (2001) Influence of precipitation minus evaporation and Bay of Bengal rivers on dynamics, thermodynamics, and mixed layer physics in the upper Indian Ocean. J Geophys Res-Oceans 106(C4):6895–6916

    Article  Google Scholar 

  • Hastenrath S, Greischar L (1993) The monsoonal heat budget of the hydrosphere-atmosphere system in the Indian Ocean sector. J Geophys Res 98:6869–6881

    Article  Google Scholar 

  • Hitchcock GL, Key EL, Masters J (2000) The fate of upwelled waters in the Great Whirl, August 1995. Deep-Sea Res II 47:1605–1621

    Article  Google Scholar 

  • Howden SD, Murtugudde R (2001) Effects of river inputs into the Bay of Bengal. J Geophys Res 106 (C9):19,825–19,843

  • Hsiung J, Newell RE, Houghtby T (1989) The annual cycle of oceanic heat storage and oceanic meridional heat transport. Q J R Meteorol Soc 115:1–28

    Article  Google Scholar 

  • Huang B-H, Kinter JL III (2002) Interannual variability in the tropical Indian Ocean. J Geophys Res 107(C11):3199. doi:10.1029/2001JC001278

    Article  Google Scholar 

  • Iizuka S, Matsuura T, Yamagata T (2000) The Indian Ocean SST dipole simulated in a coupled general circulation model. Geophys Res Lett 27:3369–3372

    Article  Google Scholar 

  • Ishii M, Kimoto M (2009) Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J Oceanogr 65(3):287–299

    Article  Google Scholar 

  • Iskandar I, Tozuka T, Sasaki H, Masumoto Y, Yamagata T (2006) Intraseasonal variations of surface and subsurface currents off Java as simulated in a high-resolution ocean general circulation model. J Geophys Res 111, C12015. doi:10.1029/2006JC003486

    Article  Google Scholar 

  • Jensen TG (2003) Cross-equatorial pathways of salt and tracers from the northern Indian Ocean: modelling results. Deep-Sea Res II 50:2111–2128

    Article  Google Scholar 

  • Kara AB, Rochford PA, Hurlburt HE (2003) Mixed layer depth variability over the global ocean. J Geophys Res 108 C3 3079 doi:3010.1029/2000JC000736

  • Kim ST, Yu J-Y, Lu M-M (2012) The distinct behaviors of Pacific and Indian Ocean warm pool properties on seasonal and interannual time scales. J Geophys Res 117, D05128. doi:10.1029/2011JD016557

    Google Scholar 

  • Kinkade CS, Marra J, Dickey TD, Weller R (2001) An annual cycle of phytoplankton biomass in the Arabian Sea, 1994–1995, as determined by moored optical sensors. Deep-Sea Res II 48:1285–1301

    Article  Google Scholar 

  • Klein SA, Soden BJ, Lau NC (1999) Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J Clim 12(4):917–932

    Article  Google Scholar 

  • Kumar SP, Ishida A, Yoneyama K, Kumar MRR, Kashino Y, Mitsudera H (2005) Dynamics and thermodynamics of the Indian Ocean warm pool in a high-resolution global general circulation model. Deep-Sea Res II 52:2031–2047

    Article  Google Scholar 

  • Kundu PK (1976) Ekman veering observed near the ocean bottom. J Phys Oceanogr 6:238–242

    Article  Google Scholar 

  • Lau N-C, Nath MJ (2004) Coupled GCM simulation of atmosphere–ocean variability associated with zonally asymmetric SST changes in the tropical Indian Ocean. J Clim 17:245–265

    Article  Google Scholar 

  • Le Traon PY, Nadal F, Ducet N (1998) An improved mapping method of multisatellite altimeter data. J Atmos Ocean Technol 15(2):522–534

    Article  Google Scholar 

  • Levitus S, Antonov JI, Boyer TP (2005) Warming of the world ocean, 1955–2003. Geophys Res Lett 32, L02604. doi:10.1029/ 2004GL021592

    Google Scholar 

  • Liao X-M, Du Y, Zhan H-G, Shi P, Wang J (2014) Summer time phytoplankton blooms and surface cooling in the western south equatorial Indian Ocean. J Geophys Res Oceans 119:7687–7704. doi:10.1002/2014JC010195

    Article  Google Scholar 

  • Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE, Baranova OK, Zweng MM, Paver CR, Reagan JR, Johnson DR, Hamilton M, Seidov D (2013) World ocean atlas 2013 volume 1: temperature. In: Levitus S, Mishonov E Technical (eds) NOAA Atlas NESDIS., 73 40 pp

    Google Scholar 

  • Martin PJ, Barron CN, Smedstad LF, Campbell TJ, Wallcraft AJ, Rhodes RC, Rowley C, Townsend TL, Carroll SN (2009) User’s Manual for the Navy Coastal Ocean Model (NCOM) version 4.0 NRL Report NRL/MR/7320-09-9151

  • Masumoto Y, Meyers G (1998) Forced Rossby waves in the southern tropical Indian Ocean. J Geophys Res 103(C12):27589–27602

    Article  Google Scholar 

  • McCreary JP, Kohler KE, Hood RR, Olson DB (1996) A four-component model of biological activity in the Arabian Sea. Prog Oceanogr 37:193–240

    Article  Google Scholar 

  • McCreary JP, Murtugudde R, Vialard J, Vinayachandran PN, Wiggert JD, Hood RR, Shankar D, Shetye SR (2009) Biophysical processes in the Indian Ocean. In Indian Ocean biogeochemical processes and ecological variability. Geophys Monogr Ser 185:9–32 AGU Washington DC

  • McPhaden MJ, Meyers G, Ando K, Masumoto Y, Murty VSN, Ravichandran M, Syamsudin F, Yu L, Yu W-D (2009) RAMA: The Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction. Bull Am Meteorol Soc 90:459–480

    Article  Google Scholar 

  • Murtugudde R, Busalacchi AJ (1999) Interannual variability of the dynamics and thermodynamics of the tropical Indian Ocean. J Clim 12:2300–2326

    Article  Google Scholar 

  • Nagura M, McPhaden MJ (2010) Wyrtki Jet dynamics: seasonal variability. J Geophys Res 115, C07009. doi:10.1029/2009JC005922

    Google Scholar 

  • Quadfasel D, Frische A, Cresswell G (1996) The circulation in the source area of the South Equatorial Current in the eastern Indian Ocean. J Geophys Res-Ocean 101(C5):12483–12488

    Article  Google Scholar 

  • Rahaman R, Ravichandran M, Sengupta D, Harrison MJ, Griffies SM (2014) Development of a regional model for the North Indian Ocean. Ocean Model 75:1–19

  • Rao SA, Behera SK, Masumoto Y, Yamagata T (2002) Interannual subsurface variability in the tropical Indian Ocean with a special emphasis on the Indian Ocean Dipole. Deep-Sea Res II 49(7):1549–1572

  • Ratheesh S, Mankad B, Basu S, Kumar R, Sharma R (2013) Assessment of satellite-derived sea surface salinity in the Indian Ocean. IEEE Geosci Remote Sens Lett 10(3):428–431

    Article  Google Scholar 

  • Ravichandrana M, Behringer D, Sivareddy S, Girishkumar MS, Chacko N, Harikumar R (2014) Evaluation of the global ocean data assimilation system at INCOIS: the tropical Indian Ocean. Ocean Model 69:123–135. doi:10.1016/j.ocemod.2013.05.003

  • Rienecker MM, Suarez MJ, Gelaro R, Todling R, Bacmeister J et al. (2011) MERRA: NASA's Modern-Era Retrospective Analysis for Research and Applications. J Clim 24:3624–3648. doi:10.1175/JCLI-D-11-00015.1

  • Ryabchenko VA, Gorchakov VA, Fasham MJR (1998) Seasonal dynamics and biological productivity in the Arabian Sea euphotic zone as simulated by a three-dimensional ecosystem model. Glob Biogeochem Cycles 12:501–530

    Article  Google Scholar 

  • Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363

    Google Scholar 

  • Sanilkumar KV, Kuruvilla TV, Jogendranath D, Rao RR (1997) Observations of the Western Boundary Current of the Bay of Bengal from a hydrographic survey during March 1993. Deep-Sea Res I 44(1):135–145

    Article  Google Scholar 

  • Santoso A, Gupta AS, England MH (2010) Genesis of Indian Ocean mixed layer temperature anomalies: a heat budget analysis. J Clim 15:5375–5403. doi:10.1175/2010JCLI3072.1

    Article  Google Scholar 

  • Semtner AJ, Chervin RM (1988) A simulation of the global ocean circulation with resolved eddies. J Geophys Res 97:15502–15522

    Article  Google Scholar 

  • Sengupta D, Bharath Raj GN, Shenoi SSC (2006) Surface freshwater from the Bay of Bengal runoff and Indonesian throughflow in the tropical Indian Ocean. Geophys Res Lett 33: L22609. doi:10.1029/2006GL027573

  • Schott F (1983) Monsoon response of the Somali Current and associated upwelling. Prog Oceanogr 12(3):357–38

    Article  Google Scholar 

  • Schott FA, Xie S-P, McCreary JP (2009) Indian Ocean circulation and climate variability. Rev Geophys 47(1), RG1002. doi:10.1029/2007RG000245

    Article  Google Scholar 

  • Shulman IG, Kindle JC, DeRada S, Anderson SC, Penta B (2003) Development of a hierarchy of nested models to study the California current system (No. NRL/PP/7330-03-20). Naval Research Lab Stennis Space Center MS Oceanography DIV

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296

    Article  Google Scholar 

  • Sprintall J, Gordon AL, Murtugudde R, Susanto D (2000) A semiannual Indian Ocean forced Kelvin wave observed in the Indonesian seas in May 1997. J Geophys Res-Oceans 105(C7):17217–17230

  • Sprintall J, Gordon AL, Koch-Larrouy L, Lee T, Potemra JT, Pujiana K, Wijffels SE (2014) The Indonesian seas and their impact on the coupled ocean-climate system. Nat Geosci 7:487–492

    Article  Google Scholar 

  • Vinayachandran PN, Kurian J, Neema CP (2007) Indian Ocean response to anomalous conditions in 2006. Geophys Res Lett 34, L15602. doi:10.1029/2007GL030194

    Article  Google Scholar 

  • Xie S-P, Annamalai H, Schott FA, McCreary JP (2002) Structure and mechanisms of South Indian Ocean climate variability. J Clim 15:864–878

    Article  Google Scholar 

  • Xie S-P, Carton JA (2004) Tropical Atlantic variability: Patterns, mechanisms, and impacts. Earth’s Climate: The Ocean–atmosphere Interaction Geophys Monogr 147:121–142

  • Xie S-P, Du Y, Huang G, Zheng X-T, Tokinaga H, Hu K, Liu Q (2010) Decadal shift in El Niño influences on Indo-western Pacific and East Asian climate in the 1970s. J Clim 23(12):3352–3368

    Article  Google Scholar 

  • Xie S-P, Hu K-M, Hafner J, Tokinaga H, Du Y, Huang G, Sampe T (2009) Indian Ocean capacitor effect on Indo western pacific climate during the summer following El Nino. J Clim 22:730–747

    Article  Google Scholar 

  • Wang W-Q, Zhu X-H, Wang C-Z, Kohl A (2014) Deep meridional overturning circulation in the Indian Ocean and its relation to Indian Ocean Dipole. J Clim 27:4508–4520. doi:10.1175/JCLI-D-13-00472.1

    Article  Google Scholar 

  • Webster PJ, Moore A, Loschnigg J, Leben R (1999) Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–1998. Nature 401:356–359

    Article  Google Scholar 

  • Wiggert JD, Murtugudde RG, Christian JR (2006) Annual ecosystem variability in the tropical Indian Ocean: results of a coupled bio-physical ocean general circulation model. Deep-Sea Res II 53:644–676

    Article  Google Scholar 

  • Wiggert JD, Hood RR, Banse K, Kindle JC (2005) Monsoon-driven biogeochemical processes in the Arabian Sea. Prog Oceanogr 65:176–213

    Article  Google Scholar 

  • Wiggert JD, Vialard J, Behrenfeld MJ (2009) Basin-wide modification of dynamical and biogeochemical processes by the positive phase of the Indian Ocean Dipole during the SeaWiFS era. In Indian Ocean Biogeochemical Processes and Ecological Variability Geophys Monogr Ser 185:9–32 AGU Washington DC doi:10.1029/2008GM000776

  • Wijffels SE, Meyers G (2003) Fifteen years of XBT measurements in the Indonesian Throughflow. Abstract IUGG General Assembly, Sapporo Japan

    Google Scholar 

  • Wyrtki K (1973) Equatorial jet in the Indian Ocean. Science 181:264–266

    Article  Google Scholar 

  • Yamagata T, Behera SK, Luo J-J, Masson S, Jury MR, Rao SA (2004) Coupled ocean–atmosphere variability in the tropical Indian Ocean. In: Wang CZ, Xie S-P, Carton JA (eds) Earth’s Climate. American Geophysical Union, Washington D.C., pp 189–211. doi:10.1029/147GM12

    Google Scholar 

  • Yang J, Liu Q, Xie S-P, Liu Z, Wu L (2007) Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys Res Lett 34, L02708. doi:10.1029/2006GL028571

    Article  Google Scholar 

  • Yoshida K (1959) A theory of the Cromwell current (the equatorial undercurrent) and of the equatorial upwelling—an interpretation in a similarity to a coastal circulation. J Oceanogr Soc Jpn 15:159–170

    Google Scholar 

  • Yu L-S, Rienecker MM (1999) Mechanisms for the Indian Ocean warming during the 1997–98 El Nino. Geophys Res Lett 26(6):735–738

    Article  Google Scholar 

  • Zhang Y-H, Du Y (2012) Seasonal variability of salinity budget and water exchange in the northern Indian Ocean from HYCOM assimilation. Chin J Oceanogr Limnol 30(6):1082–1092

    Article  Google Scholar 

  • Zhang Y-H, Du Y, Zheng S-J, Yang Y-L, Cheng X-H (2013) Impact of Indian Ocean Dipole on the salinity budget in the equatorial Indian Ocean. J Geophys Res Oceans 118(10):4911–4923

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA11010304), the China Scholarship Counsel (No. 201304910293), and the Natural Science Foundation of China (41476012). The modeling work was supported by NASA grant number NNX07AK82G, and the model simulations were performed at the Navy DoD Supercomputing Resource Center, Stennis Space Center, Mississippi. The authors thank Dr. Feng Zhou and Dr. Yan Du for their suggestions and comments. Thanks also to the NOAA/OSCAR group for providing satellite-derived current data. The RAMA data were provided by the TAO Project Office at NOAA/PMEL. The altimeter products are produced by SSALTO/DUACS and distributed by AVISO. XBT data are sourced from the Integrated Marine Observing System (IMOS); IMOS is supported by the Australian Government through the National Collaborative Research Infrastructure Strategy (NCRIS) and the Super Science Initiative (SSI). The satellite-derived salinity data were obtained from the “Centre Aval de Traitement des Données SMOS” (CATDS), operated for the “Centre National d’Etudes Spatiales” (CNES, France) by IFREMER (Brest, France)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huijie Xue.

Additional information

Responsible Editor: Jianping Gan

This article is part of the Topical Collection on the 6th International Workshop on Modeling the Ocean (IWMO) in Halifax, Nova Scotia, Canada 23-27 June 2014

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, K., Derada, S., Xue, H. et al. A 1/8° coupled biochemical-physical Indian Ocean Regional Model: Physical results and validation. Ocean Dynamics 65, 1121–1142 (2015). https://doi.org/10.1007/s10236-015-0860-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-015-0860-8

Keywords

Navigation