Skip to main content
Log in

The role of density gradients on tidal asymmetries in the German Bight

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

The dynamics of the German Bight associated with river plumes and fresh water intrusions from tidal flats have been studied with numerical simulations. The horizontal and vertical patterns of the M2, M4 and M6 tides revealed complex distortions along the bathymetric channels connecting the coast and the open sea. A major focus was on the surface-to-bottom change in tidal asymmetries, which provides a major control on draining the tidal flats around the Elbe and Weser River mouths. Comparisons between baroclinic and barotropic experiments demonstrated that the estuarine gravitational circulation is responsible for pronounced differences in surface and bottom asymmetries. These differences could be considered as a basic control mechanism for sediment dynamics. The most prominent area of tidal distortions, manifested by a delay of the tidal wave, was located between the estuarine turbidity maximum and the estuarine mouth north of Cuxhaven. This area was characterized by the strongest periodic convergence and divergence of the flow and by the largest salinity gradients. The enhancement of the gravitational circulation occurred during the transition between spring and neap tides. The large-scale dynamics and small-scale topographic features could impact the sediment distribution as there was a marked interplay in the channels between stratification and turbulence. Also an explanation has been given for the mechanisms supporting the existence of a mud area (Schlickgebiet) south of Helgoland Island, associated with trapping suspended particular matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Antia E, Flemming B, Wefer G (1996) Patterns of tidal flow asymmetry on shoreface-connected ridge topography off Spiekeroog Island, German bight. Ger J Hydrogr 48:97–107

    Google Scholar 

  • Backhaus JO (1980) Simulation von Bewegungsvorgängen in der Deutschen Bucht. Dt Hydrogr Z Erg H B 15:56 pp

    Google Scholar 

  • Burchard H, Bolding K (2002) GETM – a general estuarine transport model. Scientific documentation, no EUR 20253 EN, European Commission, printed in Italy. 157 pp

  • Carbajal N, Pohlmann T (2004) Comparison between measured and calculated tidal ellipses in the German Bight. Ocean Dyn 54:520–530

    Article  Google Scholar 

  • Egbert G, Erofeeva S (2002) Efficient inverse modeling of barotropic ocean tides. J Atmos Ocean Technol 19(2):183–204

    Article  Google Scholar 

  • Figge K (1981) Sedimentverteilung in der Deutschen Bucht. Karte Nr. 2900 mit Beiheft. Deutsches Hydrograhisches Institut

  • Friedrichs CT (2010) Barotropic tides in channelized estuaries. In: Valle-Levinson A (ed) Contemporary issues in estuarine physics. Cambridge University Press, Cambridge, pp 27–61

    Chapter  Google Scholar 

  • Friedrichs CT, Aubrey DG (1988) Non-linear tidal distortion in shallow well mixed estuaries: a synthesis. Estuar Coast Shelf Sci 27:521–545

    Article  Google Scholar 

  • Geyer WER, MacCready P (2014) The estuarine circulation. Annu Rev Fluid Mech 46:175–97

    Article  Google Scholar 

  • Geyer W, Signell R (1992) A reassessment of the role of tidal dispersion in estuaries. Estuaries 15(2):97–108

    Article  Google Scholar 

  • Godin G (1991) Frictional effects in river tides. In: Parker BB (ed) Tidal hydrodynamics. Wiley, New York, pp 379–402

    Google Scholar 

  • Groen P (1967) On the residual transport of suspended matter by an alternating tidal current. Neth J Sea Res 3(4):564–574

  • Hansen DV, Rattray M (1966) New dimensions in estuary classification. Limnol Oceanogr 11:319–326

    Article  Google Scholar 

  • Jay DA (2010) Estuarine variability. In A. Valle-Levinson (Ed.), Contemporary issues in estuarine physics, pp. 62–99

  • Jay DA, Musiak JD (1996) Internal tidal asymmetry in channel flows: origins and consequences. In C. Pattiaratchi (ed.), Mixing processes in estuaries and coastal seas, an American Geophysical Union Coastal and Estuarine Sciences Monograph, pp. 219–258

  • Jay DA, Smith JD (1990) Circulation, density distribution and neap-spring transitions in the Columbia river estuary. Prog Oceanogr 25:81–112

    Article  Google Scholar 

  • Kappenberg J, Fanger H-U (2007) Sedimenttransportgeschehen in der tidebeeinflussten Elbe, der Deutschen Bucht und in der Nordsee. Gutachten GKSS 2007/20 des GKSS Forschungszentrums, Geesthacht GmbH, im Auftrag von Hamburg Port Authority. 125 pp

  • Kappenberg J, Grabemann I (2001) Variability of the mixing zones and estuarine turbidity maxima in the Elbe and Weser estuaries. Estuaries 24:699–706

    Article  Google Scholar 

  • Kappenberg J, Schymura G, Kuhn H, Fanger H-U (1996) Spring/neap variations of suspended matter concentration and transport in the turbidity maximum of the Elbe Estuary. Advances in Limnology, 47, Particulate Matter in Rivers and Estuaries, Archiv für Hydrobiologie, S. 323–332

  • MacCready P (2004) Toward a unified theory of tidally-averaged estuarine salinity structure. Estuaries 27(4):561–570

    Article  Google Scholar 

  • Mayer B (1995) Ein dreidimensionales, numerisches schwebstoff-transportmodell mit anwendung auf die Deutsche Bucht. Tech. Rep. GKSS 95/E/59, GKSS-Forschungszentrum Geesthacht GmbH

  • Monismith SG, Kimmerer W, Stacey MT, Burau JR (2002) Structure and flow-induced variability of the subtidal salinity field in northern San Francisco Bay. J Phys Ocean 32(11):3003–3019

    Article  Google Scholar 

  • Nunes RA, Simpson JH (1985) Axial convergence in a well-mixed estuary. Estuar Coast Shelf Sci 20:637–49

    Article  Google Scholar 

  • Pawlowicz R, Beardsley B, Lentz S (2002) Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput Geosci 28:929–937

    Article  Google Scholar 

  • Postma H (1961) Transport and accumulation of suspended matter in the Dutch Wadden Sea. Neth J Sea Res 1:148–190

  • Ridderinkhof S (1997) The effect of tidal asymmetries on the net transport of sediments in the Ems Dollard estuary. J Coast Res 25:41–48

    Google Scholar 

  • Rolinski S, Eichweber G (2000) Deformations of the tidal wave in the Elbe estuary and their effect on suspended particulate matter dynamics. Phys Chem Earth (B) 25(4):355–358

    Article  Google Scholar 

  • Staneva J, Stanev E, Wolff J, Badewien T, Reuter R, Flemming B, Bartholom€a A, Bolding K (2009) Hydrodynamics and sediment dynamics in the German Bight. A focus on observations and numerical modelling in the East Frisian Wadden Sea. Cont Shelf Res 29(1):302–319. doi:10.1016/j.csr.2008.01.006

  • Sager G (1968) Atlast der Elemente des Tiedenhubes und der Gezeitenströme für die Nordsee, den Kanal und die Irische See. 2 Aufl IX, 58S. Rostok: Seehydrographischer Dienst, DDR

  • Simpson JH, Nunes RA (1981) The tidal intrusion front: an estuarine convergence zone. Estuar Coast Shelf Sci 13:257–266

    Article  Google Scholar 

  • Simpson JH, Brown J, Matthews J, Allen G (1990) Tidal straining, density currents, and stirring in the control of estuarine stratification. Estuaries 13(2):125–132

    Article  Google Scholar 

  • Speer PE (1984) Tidal distortion in shallow estuaries. PhD. thesis, 924 WHOI-MIT Joint Program in Oceanography, Woods Hole, MA, 210 pp

  • Stacey MS, Monismith G, Burau J (1999) Observations of turbulence in a partially stratified estuary. J Phys Oceanogr 29:1950–1970

    Article  Google Scholar 

  • Stacey MT, Brennan ML, Burau JR, Monismith SG (2010) The tidally averaged momentum balance in a partially and periodically stratified estuary. J Phys Oceanogr 40:2418–2434

    Article  Google Scholar 

  • Stanev EV, Floeser G, Wolff J-O (2003) First- and higher-order dynamical controls on water exchanges between tidal basins and the open ocean. A case study for the East Frisian Wadden Sea. Ocean Dyn 53:146–165

    Article  Google Scholar 

  • Stanev EV, Brink-Spalink G, Wolff J-O (2007a) Sediment dynamics in tidally dominated environments controlled by transport and turbulence: a case study for the East Frisian Wadden Sea. J Geophys Res 112:C04018. doi:10.1029/2005JC003045

    Google Scholar 

  • Stanev EV, Flemming BW, Bartholomä A, Staneva JV, Wolff J-O (2007b) Vertical circulation in shallow tidal inlets and back-barrier basins. Cont Shelf Res 27:798–831

    Article  Google Scholar 

  • Stanev EV, Schulz-Stellenfleth J, Staneva J, Grayek S, Seemann J, Petersen W (2011) Coastal observing and forecasting system for the German Bight—estimates of hydrophysical states. Ocean Sci 7:569–583

    Article  Google Scholar 

  • Stanev ES, AlNadhairi R, Staneva J, Schulz-Stellenfleth J, Valle-Levinson A (2014) Tidal wave transformations in the German Bight. Ocean Dyn 64:951–968

    Article  Google Scholar 

  • Valle-Levinson A (ed) (2010) Contemporary issues in estuarine physics. Cambridge University Press, Cambridge, p 315

    Google Scholar 

  • Valle-Levinson A (2011) Classification of estuarine circulation. In: Wolanski E, McLusky DS (eds) Treatise on estuarine and coastal science, vol 1. Academic, Waltham, pp 75–86

    Chapter  Google Scholar 

  • van de Kreeke J, Robaczewska K (1993) Tide-induced residual transport of coarse sediment; application to the Ems Estuary. Neth J Sea Res 31(3):209–220

    Article  Google Scholar 

  • van Haren H (2003) Current spectra under varying stratification conditions in the central North Sea. J Sea Res 51(2004):77–91

    Google Scholar 

  • van Leeuwen SM, de Swart HE (2002) Intermediate modeling of tidal inlet: spatial asymmetries in flow and mean sediment transport. Cont Shelf Res 22:1795–1810

    Article  Google Scholar 

  • von Haugwitz W, Wong HK, Salge U (1988) The Mud Area southeast of Helgoland: a reflection seismic study. In: Kempe, S.; Liebezeit, G.; Dethlefsen, V.; Harms, U. (Eds.): Biogeochemistry and distribution of suspended matter in the North Sea and implications for fisheries biology. SCOPE/UNEP Sonderband, Mitt. Geol.-Paläontolog. Inst. Univ. Hamburg, 65, S. 409–422

  • Winter C (2011) Macro scale morphodynamics of the German North Sea coast. J Coast Res SI 57:706–710

    Google Scholar 

Download references

Acknowledgments

The forcing data have been provided by the German Weather Service. The bathymetric and river run-off data were provided by the Bundesamt für Seeschifffahrt und Hydrographie (BSH). Thanks are due to Joanna Staneva for making the model setup available to authors, Xi Lu and Benjamin Jacob for the plotting support and Johannes Schulz-Stellenfleth for the useful discussions. We thank the two anonymous reviewers for their comments. We acknowledge the use of Rapid Response imagery from the Land Atmosphere Near-real time Capability for EOS (LANCE) system operated by the NASA/GSFC/Earth Science Data and Information System (ESDIS) with funding provided by NASA/HQ. This work has been carried out in the frame of German COSYNA project and profited largely from the EU JERICO project AVL acknowledges support from the US NSF project OCE-1332718.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emil V. Stanev.

Additional information

Responsible Editor: Jörg-Olaf Wolff

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stanev, E.V., Al-Nadhairi, R. & Valle-Levinson, A. The role of density gradients on tidal asymmetries in the German Bight. Ocean Dynamics 65, 77–92 (2015). https://doi.org/10.1007/s10236-014-0784-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-014-0784-8

Keywords

Navigation