Skip to main content
Log in

Structure and position of the bottom salinity front in the Amazon Estuary

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

This paper aims to study the spatial and temporal variability of the haline structure in the Amazon River mouth. A baroclinic three-dimensional numerical model (Delft3D) is configured in order to obtain a yearlong data set of salinity for the domain of interest. The results are analyzed along a cross-shore transect at the Amazon North Channel. A model-based system description is presented considering the differences between average modeled salinities for different scenarios, dry/wet for river discharge, neap/spring for tides, and windy/calm for wind forcing. These results are also presented as Hovmöller graphics, evidencing their relation with forcings. A statistical model is fitted in order to quantify the importance of the three main forcings—namely river discharge, tide, and wind—in the bottom salinity front position. The main conclusions are as follows: (i) Neap tides favor stratification, estuarine circulation, and the landward displacement of the front. River discharge has low influence on bottom salinities. Landward winds promote an increase in surface salinity and reduction at the bottom. (ii) From a maximum displacement of ∼100 km, the bottom salinity front position presents astronomical ranges of 23.2 km for semidiurnal constituents and 66.8 km for long-term constituents. (iii) Time lags (in days) found between forcings and the bottom salinity front position were 2.5 for tidal range, null for discharge, and 6.25 for NE–SW winds. (iv) The statistical model confirmed the major relevance of the astronomic tidal effect over the salinity front dynamics (r 2 = 80 %), surpassing the partial influence of winds (r 2 = 30 %) and river discharges (r 2 = 21 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abood KA (1974) Circulation in the Hudson Estuary. Ann N Y Acad Sci 250:39–111

  • Allen GP, Salomon JC, Bassoullet P, Du Penhoa YT, De Grandpré C (1980) Effects of tides on mixing and suspended sediment transport in macrotidal estuaries. Sediment Geol 26:69–90

    Article  Google Scholar 

  • Arentz MFR (2009) A modelagem hidrodinâmica como auxílio à navegação no canal norte do estuário do amazonas. Dissertação de Mestrado em PEnO, COPPE/UFRJ, Rio de Janeiro, RJ, Brasil

  • AVISO, 2013. www.aviso.oceanobs.com.

  • Bowen MW, Geyer WR (2003) Salt transport and the time-dependent salt balance of a partially stratified estuary. J Geophys Res 108(C5):1978–2012

    Google Scholar 

  • Buchard H, Baumert H (1998) The formation of estuarine turbidity maxima due to effects in the salt wedge: a hydrodynamic process study. J Phys Oceanogr 28:309–321

    Article  Google Scholar 

  • Cancino LE, Neves R (1999) Hydrodynamic and sediment suspension modelling in estuarine systems. Part II: application to the Western Scheldt and Gironde estuaries. J Mar Syst 22:117–131

    Article  Google Scholar 

  • Dee D, Uppala S, Simmons A, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M, Balsamo G, Bauer P, Bechtold P, Beljaars A, Van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer A, Haimberger L, Healy S, Hersbach H, Holm E, Isaksen L, Kallberg P, Kohler M, Matricardi M, McNally A, Monge-Sanz B, Morcrette J, Park B, Peubey C, Rosnay P, Tavolato C, Thepaut J, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J Roy Meteorol Soc 137:553–597

    Article  Google Scholar 

  • Dronkers JJ (2005) Dynamics of coastal systems. Advanced Series on Ocean Engineering 25, World Scientific

  • Fernandes RD, Vinzon SB, Oliveira FAM (2007) Navigation at the Amazon River mouth: sandbank migration and depth surveying. In: Wade Watson (ed.) Ports 2007: thirty years of sharing ideas 1977-2007; Proc. Intern. Conf., San Diego, 25–28 (March). Reston: ASCE

  • Ferreira AG, Mello NGS (2005) Principais sistemas atmosféricos atuantes sobre a região nordeste do Brasil e a influência dos oceanos Pacífico e Atlântico no clima da região. Revista Brasileira de Climatologia 1(N1):15–28

    Google Scholar 

  • Fontes RFC, Castro BM, Beardsley RC (2008) Numerical study of circulation on the inner Amazon Shelf. Ocean Dyn 58:187–198

    Article  Google Scholar 

  • Gabioux M, Vinzon S, Paiva AM (2005) Tidal propagation over fluid mud layers on Amazon shelf. Cont Shelf Res 25:113–125

    Article  Google Scholar 

  • Gallo MN, Vinzon SB (2005) Generation of overtides and compound tides in Amazon estuary. Ocean Dyn 55(5–6):441–448

    Article  Google Scholar 

  • Galloway WE (1975) Deltas, models for exploration, process framework for describing the morphologic and stratigraphic evolution of deltaic depositional systems. Ed Broussard M. L. Houston Geological Society, Houston, pp 87–98

    Google Scholar 

  • Geyer WR (1995) Tide-induced mixing in the Amazon frontal zone. J Geophys Res 100:2341–2353

    Article  Google Scholar 

  • Geyer WR, Kineke GC (1995) Observations of currents and water properties in the Amazon frontal zone. J Geophys Res 100:2321–2339

    Article  Google Scholar 

  • Geyer WR, Beardsley RC, Lentz SJ, Candela J, Limeburner R, Johns WE, Castro BM, Soares ID (1996) Physical oceanography of the Amazon shelf. Cont Shelf Res 16(5/6):575–616

    Article  Google Scholar 

  • Gong W, Shen J (2011) The response of salt intrusion to changes in river discharge and tidal mixing during the dry season in the Modaomen Estuary, China. Cont Shelf Res 31:769–788

    Article  Google Scholar 

  • Hansen DV, Rattray M (1966) New dimension in estuary classification. Limnol Oceanogr 11(N3):319–326

    Article  Google Scholar 

  • Harms IH, Hübner U, Backhaus JO, Kulakov M, Stanovoy V, Stepanets OV, Kodina LA, Schlitzer R (2003, January) Salt intrusions in Siberian river estuaries: observations and model experiments in Ob and Yenisei. In Stein R, Fahl K, Fütterer DK, Galimov EM, Stepanets OV (eds) Siberian river run-off in the Kara Sea: characterisation, quantification, variability, and environmental significance, vol 6. Proc Mar Sci, pp 27–45

  • Jay DA, Musiak J (1994) Particle trapping in estuarine tidal flows. J Geophys Res 99(C10):445–461

    Google Scholar 

  • Jewell PW, Stallard RF, Mellor GL (1993) Numerical studies of bottom shear stress and sediment distribution on the Amazon Continental Shelf. J Sediment Petrol 63(4):734–745

    Google Scholar 

  • Johns WE, Lee TN, Schott FA, Zantopp RJ et al (1990) The North Brazil Current retroflection: seasonal structure and eddy variability. J Geophys Res 95:22103–22120

    Article  Google Scholar 

  • Kineke GC (1993) Fluid muds on the Amazon continental shelf. Ph.D. dissertation, University of Washington, Seattle, USA, 259 p

  • Kineke GC, Sternberg RW, Trowbridge JH, Geyer WR (1996) Fluid-mud processes on the Amazon continental shelf. Cont Shelf Res 16(5/6):667–696

    Article  Google Scholar 

  • Krelling APM, Paiva AM (2010) The vertical structure of North Brazil current rings. Meeting of the Americas, American Geophysical Union – AGU

  • Lentz SJ (1995) Seasonal variations in the horizontal structure of the Amazon Plume inferred from historical hydrographic data. J Geophys Res 100(C2):2391–2400

    Article  Google Scholar 

  • Lentz SJ, Limeburner R (1995) The Amazon River plume during AmasSeds: spatial characteristics and salinity variability. J Geophys Res 100(C2):2355–2375

    Article  Google Scholar 

  • Lerczak JA, Geyer WR, Ralston DK (2009) The temporal response of the length of a partially stratified estuary to changes in river flow and tidal amplitude. J Phys Oceanogr 39:915–933

    Article  Google Scholar 

  • McDowell D, O’Connor B (1977) Hydraulic behaviour of estuaries. Macmillan Press, London

    Google Scholar 

  • Monismith SG, Kimmerer W, Burau JR, Stacey MT (2002) Structure and flow-induced variability of the subtidal salinity field in northern San Francisco Bay. J Phys Oceanogr 32:3003–3019

    Article  Google Scholar 

  • Moraes SOC, Paiva AM (2009) Interações entre a corrente norte do Brasil e a plataforma externa amazônica. VIII OMAR-SAT - Seminário sobre Ondas, Marés, Engenharia Oceânica e Oceanografia por Satélite, IEAPM, Arraial do Cabo, RJ

  • Nikiema O, Devenon J, Baklouti M (2007) Numerical modeling of the Amazon River plume. Cont Shelf Res 27:873–899

    Article  Google Scholar 

  • Nittrouer CAE, Demaster DJ (1996) The Amazon shelf setting: tropical, energetic, and influenced by a large river. Cont Shelf Res 16(5/6):553–573

    Article  Google Scholar 

  • Pawlowicz R, Beardsley B, Lentz S (2002) Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput Geosci 28:929–937

    Article  Google Scholar 

  • Philander SGH, Pacanowsli RC (1980) The oceanic response to cross-equatorial winds (with application to coastal upwelling in low latitudes). Tellus 33-201-210

  • PIATAM-OCEANO (2008) Oceanografia Geológica. In: Coleção Síntese do Conhecimento Sobre a Margem Equatorial Amazônica, v. 4. Projeto Piatam Oceano, UFF, Niterói, Brasil

  • Schott FA, Fischer J, Reppin J, Send U (1993) On the mean and seasonal currents and transports at the western boundary and equatorial Atlantic. J Geophys Res 98:14353–14368

    Article  Google Scholar 

  • Schroeder WW, Dinnel SP, Wiseman WJ (1990) Salinity stratification in a river-dominated estuary. Estuarine Research Federation 13(2):145–154

    Article  Google Scholar 

  • Simpson JH, Brown J, Matthews J, Allen G (1990) Tidal straining, density currents, and stirring in the control of estuarine stratification. Estuarine Research Federation 13(2):125–132

    Article  Google Scholar 

  • Simpson JH, Sharples J, Rippeth TP (1991) A prescriptive model of stratification induced by freshwater runoff. Estuar Coast Shelf Sci 33:23–35

    Article  Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106(D7):7183–7192

    Article  Google Scholar 

  • Uncles RJ (2002) Estuarine physical processes research: some recent studies and progress. Estuar Coast Shelf Sci 55:829–856

    Article  Google Scholar 

  • Vilela CPX (2011) Influência da hidrodinâmica sobre os processos de acumulação de sedimentos finos no estuário do rio Amazonas, DSc Thesis, Coastal and Oceanographic Engineering Program, Federal University of Rio de Janeiro, 87 p

  • Vinzon SB, Gallo MN, Vilela CPX, Silva I (2011) Hydrodynamics of the Amazon Estuary, from Óbidos to the continental shelf. In: Silva RCV, Tucci CEM, Scott CA (Org.) Water and climate modeling in large basins, 1 ed, Porto Alegre: ABRH, v. 1, 71–98

  • Wong K, Moses-Hall JE (1998) On the relative importance of the remote and local wind effects to the subtidal variability in a coastal plain estuary. Am Geophys Union 103(C9):18393–18404

    Google Scholar 

  • Zhou W, Wang D, Luo L (2012) Investigation of saltwater intrusion and salinity stratification in winter of 2007/2008 in the Zhujiang River Estuary in China. Acta Oceanol Sin 31(3):31–46

    Article  Google Scholar 

Download references

Acknowledgments

This study was made possible through grants by FINEP (554616/2010-6) and CNPq (309288/2011-8 and 490410/2010-3). Gail Kineke is acknowledged for making available a data set from AmasSeds project. The first and third authors were supported by CAPES Foundation (Ministry of Education).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ernesto Molinas or Susana Beatriz Vinzon.

Additional information

Responsible Editor: Rockwell Geyer

This article is part of the Topical Collection on Physics of Estuaries and Coastal Seas 2012

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molinas, E., Vinzon, S.B., de Paula Xavier Vilela, C. et al. Structure and position of the bottom salinity front in the Amazon Estuary. Ocean Dynamics 64, 1583–1599 (2014). https://doi.org/10.1007/s10236-014-0763-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-014-0763-0

Keywords

Navigation