Skip to main content
Log in

Can tidal perturbations associated with sea level variations in the western Pacific Ocean be used to understand future effects of tidal evolution?

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

This study examines connections between mean sea level (MSL) variability and diurnal and semidiurnal tidal constituent variations at 17 open-ocean and 9 continental shelf tide gauges in the western tropical Pacific Ocean, a region showing anomalous rise in MSL over the last 20 years and strong interannual variability. Detrended MSL fluctuations are correlated with detrended tidal amplitude and phase fluctuations, defined as tidal anomaly trends (TATs), to quantify the response of tidal properties to MSL variation. About 20 significant amplitude and phase TATs are found for each of the two strongest tidal constituents, K1 (diurnal) and M2 (semidiurnal). Lesser constituents (O1 and S2) show trends at nearly half of all gauges. Fluctuations in MSL shift amplitudes and phases; both positive and negative responses occur. Changing overtides suggest that TATs are influenced by changing shallow water friction over the equatorial Western Pacific and the eastern coast of Australia (especially near the Great Barrier Reef). There is a strong connection between semidiurnal TATs at stations around the Solomon Islands and changes in thermocline depth, overtide generation, and the El Niño Southern Oscillation (ENSO). TATs for O1, K1, and M2 are related to each other in a manner that suggests transfer of energy from M2 to the two diurnals via resonant triad interactions; these cause major tidal variability on sub-decadal time scales, especially for M2. The response of tides to MSL variability is not only spatially complex, it is frequency dependent; therefore, short-term responses may not predict long-term behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Amin M (1983) On Perturbations of harmonic constants in the Thames Estuary, Geophysical Journal of the Royal Astronomical Society, 75:587–603. doi:10.1111/j.1365-246X.1983.tb03334

  • Arbic BK (2005) Atmospheric forcing of the oceanic semidiurnal tide. Geophys Res Lett 32, L02610. doi:10.1029/2004GL021668

    Article  Google Scholar 

  • Arbic BK, Garrett C (2010) A coupled oscillator model of shelf and ocean tides. Cont Shelf Res 30(6):564–574. doi:10.1016/j.csr.2009.07.008

    Article  Google Scholar 

  • Arbic BK, Karsten RH, Garrett C (2009) On tidal resonance in the global ocean and the back-effect of coastal tides upon open-ocean tides. Atmosphere-Ocean 47(4):239–266. doi:10.3137/OC311.2009

    Article  Google Scholar 

  • Armstrong JA, Bloembergen N, Ducuing J, Pershan PS (1962) Interactions between light waves in a nonlinear dielectric. Phys Rev 127:1918–1939. doi:10.1103/PhysRev.127.1918

    Article  Google Scholar 

  • Ball FK (1964) Energy transfer between external and internal gravity waves. J Fluid Mech 20:465–478. doi:10.1017/S0022112064001550

    Article  Google Scholar 

  • Bretherton FP (1964) Resonant interactions between waves. J Fluid Mech 20:457–479. doi:10.1017/S0022112064001355

    Article  Google Scholar 

  • Bromirski PD, Miller AJ, Flick RE, Auad G (2011) Dynamical suppression of sea level rise along the Pacific coast of North America: indications for imminent acceleration. J Geophys Res 116, CO7005. doi:10.1029/2010JC006759

    Article  Google Scholar 

  • Carter GS, Gregg MC (2006) Persistent near-diurnal internal waves observed above a site of M2 barotropic-to-baroclinic conversion. J Phys Oceanogr 36(6):1136–1147. doi:10.1175/JPO2884.1

    Article  Google Scholar 

  • Cartwright DE, Edden AC (1973) Corrected tables of tidal harmonics. Geophys Res Lett 33:253–264. doi:10.1111/j.1365-246X.1973.tb03420.x

    Google Scholar 

  • Cartwright DE, Tayler RJ (1971) New computations of the tide-generating potential. Geophys J R Astron Soc 23:45–74. doi:10.1111/j.1365-246X.1971.tb01803.x

    Article  Google Scholar 

  • Cazenave A, Nerem RS (2004) Present-day sea level change: observations and causes. Rev Geophys 42, RG3001. doi:10.1029/2003RG000139, 1–20

    Article  Google Scholar 

  • Chiswell SM (1994) Vertical structure of the baroclinic tides in the central North Pacific subtropical gyre. J Phys Oceanogr 24:2032–2039. doi:10.1175/1520-0485(1994)24[2032:VSOTBT]2.0.CO;2

    Article  Google Scholar 

  • Church JA, White NJ (2006) A 20th century acceleration in global sea-level rise. Geophys Res Lett 33, L01602. doi:10.1029/2005GL024826

    Article  Google Scholar 

  • Church JA, White NJ (2011) Sea-level rise from the late 19th to the early 21st century. Surv Geophys. doi:10.1007/s10712-011-9119-1

    Google Scholar 

  • Church JA, White NJ, Coleman R, Layback K, Mitrovica JX (2004) Estimates of the regional distribution of sea level rise over the 1950–2000 period. J Clim 17:2609–2625. doi:10.1175/1520-0442(2004)

    Article  Google Scholar 

  • Church JA, Roemmich D, Domingues CM, Willis JK, White NJ, Gilson JE, Stammer D, Köhl A, Chambers DP, Landerer FW, Marotzke J, Gregory JM, Tatsuo Suzuki, Cazenave A, Le Traon P-Y (2011) Ocean temperature and salinity contributions to global and regional sea-level change. In: Understanding sea-level rise and variability. Wiley-Blackwell, Oxford, pp 143–176, doi:10.1029/2007EO040008

  • Colossi JA, Munk W (2006) Tales of the venerable Honolulu tide gauge. J Phys Oceanogr 36:967–996. doi:10.1175/JPO2876.1

    Article  Google Scholar 

  • Craik ADD (1985) Wave interactions and fluid flows. Cambridge Univ. Press, Cambridge, U. K, ISBN: 978-0521368292

  • Domingues CM, Church JA, White NJ, Glecker PJ, Wijffels SE, Barker PM, Dunn JR (2008) Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature 453:1090–1094. doi:10.1038/nature07080

    Article  Google Scholar 

  • Dushaw BD, Cornuelle BD, Worcester PF, Howe BM, Luther DS (1995) Barotropic and baroclinic tides in the central North Pacific Ocean determined from long-range reciprocal acoustic transmissions. J Phys Oceangr 25:631–647. doi:10.1175/1520-0485(1995)025<0631:BABTIT>2.0.CO;2

    Article  Google Scholar 

  • Egbert GD, Erofeeva SY (2002) Efficient inverse modeling of Barotropic Ocean tides. J Atmos Ocean Technol 19(2):183–204. doi:10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2

  • Egbert GD, Erofeeva SY (2010) OTIS (OSU Tidal Inversion Software) TPXO7.2. College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, http://volkov.oce.orst.edu/tides/otis.html

  • Flick RE, Murray JF, Ewing LC (2003) Trends in United States tidal datum statistics and tide range. J Waterw Port Coast Ocean Eng Am Soc Civil Eng 129(4):155–164. doi:10.1061/~ASCE10733-950X~20031129:4~1551

    Article  Google Scholar 

  • Frelich MH, Guza RT (1984) Nonlinear effects on shoaling surface gravity waves, Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, 311(1515):1–41. doi:10.1029/JC095iC06p09645

  • Gerkema T, Staquet C, Bouruet-Aubertot P (2006) Decay of semidiurnal internal-tide beams due to subharmonic resonance. Geophys Res Lett 33, L08604. doi:10.1029/2005GL025105

    Google Scholar 

  • Gill AE (1982) Atmosphere–ocean dynamics (vol. 30). Academic press, ISBN: 978-0122835223

  • Godin G (1986) Is the abnormal response of the tide at the frequency of S2 really due to radiational effects?, Continental Shelf Research, 6(5)615-625. doi:10.1016/0278-4343(86)90026-9

  • Haigh I, Nicholls R, Wells N (2010) Assessing changes in extreme sea levels: applications to the English Channel, 1900–2006. Cont Shelf Res 30:1042–1055. doi:10.1016/j.csr.2010.02.002

    Article  Google Scholar 

  • Hamlington BD, Leben RR, Nerem RS, Han W, Kim KY (2011) Reconstructing sea level using cyclostationary empirical orthogonal functions. J Geophys Res 116, C12015. doi:10.1029/2011JC007529

    Article  Google Scholar 

  • Hibiya T, Nagasawa M, Niwa Y (2002) Nonlinear energy transfer within the oceanic internal wave spectrum at mid and high latitudes. J Geophys Res 107(C11):3207. doi:10.1029/2001JC001210

    Article  Google Scholar 

  • Horsburgh KL, Wilson C (2007) Tide–surge interaction and its role in the distribution of surge residuals in the North Sea. J Geophys Res 112, CO8003. doi:10.1029/2006JC004033

    Article  Google Scholar 

  • Huang NE, Wu Z (2008) A review on Hilbert-Huang transform: method and its application to geophysical studies. Rev Geophys 46, RG2006. doi:10.1029/2007RG000228, 1–23

    Article  Google Scholar 

  • Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time-series analysis. Proc R Soc Lond A 454:903–995. doi:10.1098/rspa.1998.0193

    Article  Google Scholar 

  • Huber PJ (1981) Robust statistics. John Wiley & Sons, Inc, Hoboken. doi:10.1137/1.9781611970036.fm

    Book  Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nystrom M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929. doi:10.1126/science.1085046

    Article  Google Scholar 

  • Hughes TP, Graham NAJ, Jackson JBC, Mumby PJ, Steneck RS (2010) Rising to the challenge of sustaining coral reef resilience. Trends Ecol Evol 25:11. doi:10.1016/j.tree.2010.07.011

    Google Scholar 

  • Jay DA (2009) Evolution of tidal amplitudes in the eastern Pacific Ocean. Geophys Res Lett 36, L04603. doi:10.1029/2008GL036185

    Article  Google Scholar 

  • Jay DA, Leffler K, Degens S (2011) Long-term evolution of Columbia River tides. ASCE J Waterw Port Coast Ocean Eng 137:182–191. doi:10.1061/(ASCE)WW.1943- 5460.0000082

    Article  Google Scholar 

  • Kaup DJ (1980) A method for solving the separable initial value problem of the full three dimensional three-wave interaction. Stud Appl Math 62:75–83

    Google Scholar 

  • Kohl A, Stammer D, Cornuelle B (2007) Interannual to decadal changes in the ECCO global synthesis. J Phys Oceanogr 37:313–337. doi:10.1175/JPO3014.1

    Article  Google Scholar 

  • Kukulka T, Jay DA (2003) Impacts of Columbia River discharge on salmonid habitat II. Changes in shallow-water habitat. J Geophys Res 108:3294

    Article  Google Scholar 

  • Lamb KG (2007) Tidally generated near-resonant internal wave triads at a shelf break. Geophys Res Lett 34, L18607. doi:10.1029/2007GL030825

    Article  Google Scholar 

  • Leffler KE, Jay DA (2009) Enhancing tidal harmonic analysis: robust solutions. Cont Shelf Res 29(1):78–88. doi:10.1016/j.csr.2008.04.011

    Article  Google Scholar 

  • Legg S, Klymak J (2008) Internal hydraulic jumps and overturning generated by tidal flow over a tall steep ridge. J Phys Oceangr 38:1949–1964

    Article  Google Scholar 

  • Lelong MP, Kunze E (2013) Can barotropic tide–eddy interactions excite internal waves? J Fluid Mech 721:1–27. doi:10.1017/jfm.2013.1

    Article  Google Scholar 

  • Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE, Baranova OK, Zweng MM, Johnson DR (2010) World Ocean Atlas 2009. In: Levitus S (ed) NOAA Atlas NESDIS 67. U.S. Gov. Printing Office, Washington, 184 pp

    Google Scholar 

  • Lombard A, Garric G, Penduff T (2009) Regional patterns of observed sea level change: insights from a 1/48 global ocean/sea-ice hindcast. Ocean Dyn 59:433–449. doi:10.1007/s10236-008-0161-6

    Article  Google Scholar 

  • MacKinnon JA, Winters KB (2005) Subtropical catastrophe: significant loss of low-mode tidal energy at 28.9N. Geophys Res Lett 2, L15605

    Article  Google Scholar 

  • Merrifield MA (2011) A shift in western tropical Pacific sea level trends during the 1990s. J Clim 24:4126–4138. doi:10.1175/2011JCLI3932.1

    Article  Google Scholar 

  • Millero FJ, Rainer F, Wright DG, McDougall TJ (2008) The composition of standard seawater and the definition of the reference-composition salinity scale. Deep Sea Res Part I 55(1):50–72. doi:10.1016/j.dsr.2007.10.001

    Article  Google Scholar 

  • Mitchum GT, Chiswell SM (2000) Coherence of internal tide modulations along the Hawaiian ridge. J Geophys Res 105(C12):28653–28661. doi:10.1029/2000JC900140

    Article  Google Scholar 

  • Müller M (2012) The influence of changing stratification conditions on barotropic tidal transport. Cont Shelf Res 47(15):107–188. doi:10.1016/j.csr.2012.07.003

    Article  Google Scholar 

  • Müller M, Arbic BK, Mitrovica J (2011) Secular trends in ocean tides: observations and model results. J Geophys Res 116(C05):013. doi:10.1029/2010JC006387

    Google Scholar 

  • National Research Council (2012) Sea-level rise for the coasts of California, Oregon, and Washington: past, present, and future. National Academies Press, Washington

    Google Scholar 

  • Nerem RS, Chambers DP, Leuliette EW, Mitchum GT, Giese BS (1999) Variations in global mean sea level associated with the 1997–1998 ENSO event: implications for measuring long term sea level change. Geophys Res Lett 26(19):3005–3008. doi:10.1029/1999GL002311

    Article  Google Scholar 

  • Nicholls RJ, Cavenaze A (2010) Sea level rise and its impacts on coastal zones. Science 328:1517–1520. doi:10.1126/science.1185782, 5985 pp

    Article  Google Scholar 

  • Parker B (1991) Tidal hydrodynamics. Wiley, NY, 1–883, ISBN: 978-0471514985

  • Pawlowicz R, Beardsley B, Lentz S (2002) Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput Geosci 28(8):929–937

    Article  Google Scholar 

  • Pickering MD, Wells NC, Horsburgh KJ, Green JAM (2012) The impact of future sea-level rise on the European Shelf tides. Cont Shelf Res 35:1–15. doi:10.1016/j.csr.2011.11.011

    Article  Google Scholar 

  • Pugh DT (1987) Tides, surges and mean sea-level: a handbook for engineers and scientists. Wiley, Chichester, 472 pp, ISBN: 978-0471915058

  • Pugh DT (2004) Changing sea levels. Effects of tides, weather and climate. Cambridge University Press, 280 pp, ISBN: 978-0521532181

  • Rainville L, Pinkel R (2006) Propagation of low-mode internal waves through the ocean. J Phys Oceangr 36(6):1220–1236. doi:10.1175/JPO2882.1

    Article  Google Scholar 

  • Ray RD (2001) Comparisons of global analyses and station observations of the S2 barometric tide. Geophys Res Lett 28:21–24. doi:10.1016/S1364-6826(01)00018-9

    Article  Google Scholar 

  • Ray RD (2006) Secular changes of the M2 tide in the Gulf of Maine. Cont Shelf Res 26(3):422–427. doi:10.1016/j.csr.2005.12.005

    Article  Google Scholar 

  • Ray RD (2009) Secular changes in the solar semidiurnal tide of the western North Atlantic Ocean. Geophys Res Lett 36, L19601. doi:10.1029/2009GL040217

    Article  Google Scholar 

  • Ray RD, Mitchum GT (1996) Surface manifestations of internal tides generated near Hawaii. Geophys Res Lett 23:2101–2104. doi:10.1029/96GL02050

    Article  Google Scholar 

  • Ray RD, Mitchum GT (1997) Surface manifestations of internal tides in the deep ocean: observations from altimetry and island gauges. Prog Oceanogr 40:135–162. doi:10.1016/S0079-6611(97)00025-6

    Article  Google Scholar 

  • Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Nino/Southern Oscillation. Mon Weather Rev 115:1606–1626

    Article  Google Scholar 

  • Simmons WF (1969) A variational method for weak resonant wave interactions, Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 309(1499):551–557. doi:10.1098/rspa.1969.0056

  • Timmermann A, McGregor S, Jin FF (2010) Wind effects on past and future regional sea level trends in the southern Indo-Pacific. J Clim 23:4429–4437. doi:10.1175/2010JCLI3519.1

    Article  Google Scholar 

  • Weiland J, Wilhelmsson H (1977) Coherent non-linear interaction of waves in plasmas. Pergamon Press, ISBN: 978-0080209647

  • White WB, Cayan DR, Dettinger MD, Auad G (2001) Sources of global warming in the upper ocean temperature during El Nino. J Geophys Res 106(C3):4349–4367. doi:10.1029/1999JC000130

    Article  Google Scholar 

  • Wolanski E (1994) Physical oceanographic processes of the Great Barrier Reef. CRC Press, 208 pp, ISBN: 0849380472

  • Woodworth PL (2010) A survey of recent changes in the main components of the ocean tide. Cont Shelf Res 30(15):1680–1691. doi:10.1016/j.csr.2010.07.002

    Article  Google Scholar 

  • Wu Z, Huang NE (2009) Ensemble empirical mode decomposition: a noise-assisted data-analysis method. Adv Adapt Data Anal 1(1):1–41

    Article  Google Scholar 

  • Xie XH, Chen GY, Shang XD, Fang WD (2008) Evolution of the semidiurnal (M2) internal tide on the continental slope of the northern South China Sea. Geophys Res Lett 35, L13604. doi:10.1029/2008GL034179

    Article  Google Scholar 

  • Zakharov VE, Manakov SV (1973) Resonant interaction of wave packets in nonlinear media. Sov Phys JTEP Lett 18:243–247

    Google Scholar 

  • Zaron E, Jay DA (2014) An analysis of secular changes in tides at open-ocean sites in the Pacific. Accepted by J Phys Oceanogr

Download references

Acknowledgements

Support for this project was provided by the National Science Foundation (NSF) project: Secular Changes in Pacific Tides, OCE-0929055, and by the National Aeronautics and Space Administration (NASA) project: NNX13AH06G. Thanks to Land Information New Zealand (LINZ) and Glen Rowe who provided data for Auckland after extended personal communication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam T. Devlin.

Additional information

Responsible Editor: Matthew Robert Palmer

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 4513 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devlin, A.T., Jay, D.A., Talke, S.A. et al. Can tidal perturbations associated with sea level variations in the western Pacific Ocean be used to understand future effects of tidal evolution?. Ocean Dynamics 64, 1093–1120 (2014). https://doi.org/10.1007/s10236-014-0741-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-014-0741-6

Keywords

Navigation