Skip to main content
Log in

Estimating the internal pressure gradient errors in a σ-coordinate ocean model for the Nordic Seas

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

Internal pressure gradient estimation is problematic in σ-coordinate ocean models and models based on more generalised topography following coordinate systems. Artificial pressure gradients in these models may create artificial flow. In recent literature, several methods for reducing the errors in the estimated internal pressure gradients are suggested. A basin with a bell-shaped seamount in the middle has often been applied as a test case. To supplement the findings from these more idealised experiments, the internal pressure gradient errors in a σ-coordinate ocean model for the Nordic Seas are discussed in the present paper. Three methods for estimating internal pressure gradients are applied in these experiments. The sensitivity of the results to the subtraction of background stratification and to the horizontal viscosity are also investigated. For the extended Nordic Seas case, basin scale modes dominate after a few days of simulation. The errors in the transports across some sections may be larger than 1 Sv (1 Sv = 106 m3 s − 1) in these studies with 16-km grid resolution. The order of magnitude of the errors in the transports of Atlantic water into the Nordic Seas is approximately 0.5 Sv or between 5 and 10 % of recent transport estimates based on measurements. The results do not indicate that the errors are generally reduced if the background stratification is subtracted when estimating internal pressure gradients in terrain following models. However, the results from the experiments initialised with the background stratification show that the erroneous flows may be reduced considerably by using more recent techniques for estimating internal pressure gradients, especially for higher values of horizontal viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adcroft A, Hill C, Marshall J (1999) A new treatment of the coriolis terms in C-grid Models at both high and low resolutions. Mon Weather Rev 127:1928–1936

    Article  Google Scholar 

  • Ådlandsvik B, Hansen R (1998) Numerical simulation of the circulation in the Svalbardbanken area in the Barents Sea. Cont Shelf Res 18:341–355

    Article  Google Scholar 

  • Avlesen H, Berntsen J, Espelid T (2001) A convergence study of two prognostic, sigma coordinate ocean models on a density driven flow in a quadratic basin. Int J Numer Methods Fluids 36:639–657

    Article  Google Scholar 

  • Barnard S, Barnier B, Beckmann A, Böning C, Coulibaly M, DeCuevas D, Dengg J, Dietrerich C, Ernst U, Herrmann P, Jia Y, Killworth P, Kröger J, Lee M-M, LeProvost C, Molines J-M, New A, Oschlies A, Reynaud T, West L, Willebrand J (1997) Dynamics of North Atlantic Models. Technical Report DYNAMO Scientific Report 3, Southampton Oceanography Centre, Empress Dock, Southampton SO14 3ZH, UK. Contract number: MAS2-CT93-0060 in MAST

  • Barnier B, Marchesiello P, de Miranda A, Molines J-M, Coulibaly M (1998) A sigma-coordinate primitive equation model for studying the circulation in the South Atlantic. Part I: model configuration with error estimates. Deep-Sea Res I 45:543–572

    Article  Google Scholar 

  • Beckmann A, Haidvogel D (1993) Numerical simulation of flow around a tall isolated seamount. Part I: problem formulation and model accuracy. J Phys Oceanogr 23:1736–1753

    Article  Google Scholar 

  • Berntsen H, Kowalik Z, Sælid S, Sørli K (1981) Efficient numerical simulation of ocean hydrodynamics by a splitting procedure. Model Identif Control 2:181–199

    Article  Google Scholar 

  • Berntsen J (2000) USERS GUIDE for a modesplit σ-coordinate numerical ocean model. Technical Report 135, Dept. of Applied Mathematics, University of Bergen, Johs. Bruns gt.12, N-5008 Bergen, Norway, p 48

  • Berntsen J (2002) Internal pressure errors in sigma-coordinate ocean models. J Atmos Ocean Technol 19(9):1403–1414

    Article  Google Scholar 

  • Berntsen J, Espelid T (1991) Error estimation in automatic quadrature routines. ACM Trans Math Softw 17:233–252

    Article  Google Scholar 

  • Berntsen J, Espelid T, Genz A (1991) An adaptive algorithm for the approximate calculation of multiple integrals. ACM Trans Math Softw 17:437–451

    Article  Google Scholar 

  • Berntsen J, Furnes G (2005) Internal pressure errors in sigma-coordinate ocean models- sensitivity of the growth of the flow to the time stepping method and possible non-hydrostatic effects. Cont Shelf Res 25:829–848

    Article  Google Scholar 

  • Berntsen J, Svendsen E (1999) Using the Skagex dataset for evaluation of ocean model skills. J Mar Syst 18:313–331

    Article  Google Scholar 

  • Berntsen J, Xing J, Alendal G (2006) Assessment of non-hydrostatic ocean models using laboratory scale problems. Cont Shelf Res 26:1433–1447

    Article  Google Scholar 

  • Blumberg A, Mellor, G (1987) A description of a three-dimensional coastal ocean circulation model. In: Heaps N (ed) Three-dimensional coastal ocean models, vol 4 of Coastal and Estuarine Series, American Geophysical Union, pp 1–16

  • Budgell W (2005) Numerical simulation of ice-ocean variability in the Barents Sea region. Towards dynamical downscaling. Ocean Dynamics 55:370–387

    Article  Google Scholar 

  • Chu P, Fan C (1997) Sixth-order difference scheme for sigma coordinate ocean models. J Phys Oceanogr 27:2064–2071

    Article  Google Scholar 

  • Chu P, Fan C (2003) Hydrostatic correction for sigma coordinate ocean models. J Geophys Res 108:3206–3218

    Article  Google Scholar 

  • Ciappa A (2006) An operational comparative test of z-levels PGF schemes to reduce pressure gradient errors of the ocean model POM. Ocean Model 12:80–100

    Article  Google Scholar 

  • Di Lorenzo E, Young W, Smith S (2006) Numerical and analytical estimates of M 2 tidal conversion at steep oceanic ridges. J Phys Oceanogr 36:1072–1084

    Article  Google Scholar 

  • Drange H, Dokken T, Furevik T, Gerdes R, Berger W (2005) The Nordic Seas: an integrated perspective, vol 158 of Geophysical Monograph Series. American Geophysical Union

  • Engedahl H, Ådlandsvik B, Martinsen E (1998) Production of monthly mean climatological archives of salinity, temperature, current and sea level for the Nordic Seas. J Mar Syst 14:1–26

    Article  Google Scholar 

  • Ezer T, Mellor G (1997) Simulations of the Atlantic Ocean with a free surface sigma coordinate ocean model. J Geophys Res 102:15647–15657

    Article  Google Scholar 

  • Ford R, Pain C, Piggott M, Goddard A, de Oliveira C, Umpleby A (2004) A nonhydrostatic finite-element model for three-dimensional stratified oceanic flows. Part I: model formulation. Mon Weather Rev 132:2816–2831

    Article  Google Scholar 

  • Fortunato A, Baptista A (1996) Evaluation of horizontal gradients in sigma-coordinate shallow water models. Atmos-Ocean 34:489–514

    Google Scholar 

  • Fossum I (2006) Analysis of instability and mesoscale motion off southern Norway. J Geophys Res 111(C08006). doi:10.1029/2005JC003228

  • Gary J (1973) Estimation of truncation errors in transformed coordinate, primitive equation atmospheric models. J Atmos Sci 30:223–233

    Article  Google Scholar 

  • Gascard J-C, Raisbeck G, Sequeira S, Yiou F, Mork K (2004) The Norwegian Atlantic Current in the Lofoten basin inferred from hydrological and tracer data (129I) and its interaction with the Norwegian Coastal Current. Geophys Res Lett 31. doi:10.1029/2003GL018303

  • Haidvogel D, Beckmann A (1999) Numerical ocean circulation modeling, vol 2 of Series on Environmental Science and Management. Imperial College Press

  • Häkkinen S (1995) Simulated interannual variability of the Greenland Sea deep Water formation and its connection to surface forcing. J Geophys Res 100:4761–4770

    Article  Google Scholar 

  • Hansen B, Østerhus S, Hatun H, Kristiansen R, Larsen K (2003) The Iceland-Faroe inflow of Atlantic water to the Nordic Seas. Prog Oceanogr 59:443–474

    Article  Google Scholar 

  • Ingvaldsen R, Asplin L, Loeng H (2004) The seasonal cycle in the Atlantic transport to the Barents Sea during the years 1997–2001. Cont Shelf Res 24:1015–1032

    Article  Google Scholar 

  • James I (1991) A primitive equation model simulation of eddies in the Norwegian Coastal Current. J Phys Oceanogr 21:893–902

    Article  Google Scholar 

  • Kliem N, Pietrzak J (1999) On the pressure gradient error in sigma coordinate ocean models: a comparison with a laboratory experiment. J Geophys Res 104:29781–29799

    Article  Google Scholar 

  • Kowalik Z, Murty T (1993) Numerical modeling of ocean dynamics, vol 5 of Advanced Series on Ocean Engineering. World Scientific

  • LaCasce J (2005) Statistics of low frequency currents over the western Norwegian shelf and slope I: current meters. Ocean Dyn 55:213–221

    Article  Google Scholar 

  • Lyness J, Kaganove J (1976) Comments on the nature of automatic quadrature routines. ACM Trans Math Softw 2:65–81

    Article  Google Scholar 

  • Marshall J, Adcroft A, Hill C, Perelman L, Heisey C (1997a) A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J Geophys Res 102(C3):5753–5766

    Article  Google Scholar 

  • Marshall J, Hill C, Perelman L, Adcroft A (1997b) Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J Geophys Res 102(C3):5733–5752

    Article  Google Scholar 

  • Mauritzen C, Häkkinen S (1997) Influence of sea ice on the thermohaline circulation in the Artic-North Atlantic Ocean. Geophys Res Lett 24:3257–3260

    Article  Google Scholar 

  • McCalpin J (1994) A comparison of second-order and fourth-order pressure gradient algorithms in a σ-coordinate ocean model. Int J Numer Methods Fluids 18:361–383

    Article  Google Scholar 

  • Mellor G (2003) Users guide for a three-dimensional, primitive equation, numerical ocean model. Technical report, Princeton University

  • Mellor G, Blumberg A (1985) Modelling vertical and horizontal diffusivities in the sigma coordinate system. Mon Weather Rev 113:1379–1383

    Article  Google Scholar 

  • Mellor G, Ezer T, Oey L-Y (1994) The pressure gradient conundrum of sigma coordinate ocean models. J Atmos Ocean Technol 11:1126–1134

    Article  Google Scholar 

  • Mellor G, Oey L-Y, Ezer T (1998) Sigma coordinate pressure gradient errors and the seamount problem. J Atmos Ocean Technol 15:1122–1131

    Article  Google Scholar 

  • Mellor G, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys Space Phys 20:851–875

    Google Scholar 

  • Melsom A (2005) Mesoscale activity in the North Sea as seen in ensemble simulations. Ocean Dyn 55:338–350

    Article  Google Scholar 

  • Oey L (1998) Eddy energetics in the Faroe–Shetland channel: a model resolution study. Cont Shelf Res 17:1929–1944

    Article  Google Scholar 

  • Oey L, Chen P (1992) A nested-grid ocean model: with application to the simulation of meanders and eddies in the Norwegian Coastal Current. J Geophys Res 97(C12):20063–20086

    Google Scholar 

  • Orvik K, Skagseth Ø (2003) Monitoring the Norwegian Atlantic slope current using a single moored current meter. Cont Shelf Res 23:159–176

    Article  Google Scholar 

  • Orvik K, Skagseth Ø, Mork M (2001) Atlantic inflow to the Nordic Seas: current structure and volume fluxes from moored current meters, VM-ADCP and SeaSoar-CTD observations, 1995–1999. Deep-Sea Res 48:937–957

    Article  Google Scholar 

  • Røed L, Fossum I (2004) Mean and eddy motion in the Skagerrak/northern North Sea: insight from a numerical model. Ocean Dyn 54:197–220

    Article  Google Scholar 

  • Shapiro R (1975) Linear filtering. Math Comput 29:1094–1097

    Article  Google Scholar 

  • Shchepetkin A, McWilliams J (2003) A method for computing horizontal pressure-gradient force in an oceanic model with a non-aligned vertical coordinate. J Geophys Res 108(C3, 3090). doi:10.1029/2001C001047

  • Skjoldal H (2004) Norwegian sea ecosystem. Tapir Academic Press

  • Skogen M, Svendsen E, Ostrowski M (1998) Quantifying volume transports with the Norwegian ecological model system. Cont Shelf Res 17:1817–1837

    Article  Google Scholar 

  • Slagstad D, Tande K (2007) Structure and resilience of overwintering habitats of Calanus finmarchicus in the Eastern Norwegian Sea. Deep Sea Res (in press)

  • Slørdal L (1997) The pressure gradient force in sigma co-ordinate ocean models. Int J Numer Methods Fluids 24:987–1017

    Article  Google Scholar 

  • Smith J, Damm P, Skogen M, Flather R, Pätsch J (1996) An investigation into the variability of circulation and transport on the North-West European shelf using three hydrodynamic models. Deutsche Hydrographische Zeitschrift 48:325–348

    Google Scholar 

  • Song Y (1998) A general pressure gradient formulation for ocean models. Part I: scheme design and diagnostic analysis. Mon Weather Rev 126:3213–3230

    Article  Google Scholar 

  • Song Y, Wright D (1998) A general pressure gradient formulation for ocean models. Part II: energy, momentum and bottom torque consistency. Mon Weather Rev 126:3231–3247

    Article  Google Scholar 

  • Stelling G, Van Kester J (1994) On the approximation of horizontal gradients in sigma coordinates for bathymetry with steep bottom slopes. Int J Numer Methods Fluids 18:915–935

    Article  Google Scholar 

  • Svendsen E, Berntsen J, Skogen M, Ådlandsvik B, Martinsen E (1996) Model simulation of the Skagerrak circulation and hydrography during SKAGEX. J Mar Syst 8:219–236

    Article  Google Scholar 

  • Thiem Ø, Berntsen J (2006) Internal pressure errors in sigma-coordinate ocean models due to anisotropy. Ocean Model 12:140–156

    Article  Google Scholar 

  • Thiem Ø, Berntsen J, Eldevik T, Alendal G (2006) Gas exploration beyond the shelf break: an oceanographic challenge. Environ Model Softw 21:136–141

    Article  Google Scholar 

  • Yang H, Przekwas A (1992) A comparative study of advanced shock-capturing schemes applied to Burgers equation. J Comput Phys 102:139–159

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarle Berntsen.

Additional information

Responsible editor: Phil Dyke

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berntsen, J., Thiem, Ø. Estimating the internal pressure gradient errors in a σ-coordinate ocean model for the Nordic Seas. Ocean Dynamics 57, 417–429 (2007). https://doi.org/10.1007/s10236-007-0118-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-007-0118-1

Keywords

Navigation