Skip to main content
Log in

Acid Rock Drainage Remediation and Element Removal Using a Peat-Humic Agent with Subsequent Thermal Treatment of the Metal–Organic Residue

Sanierung saurer Sickerwässer und Fällung gelöster Metalle durch behandelten Torf, gefolgt von thermischer Zersetzung des metall-organischen Rückstandes

Remediación de drenaje ácido de roca y remoción de elementos usando un agente turba-húmico con posterior tratamiento térmico del residuo organo-metálico

酸性矿山废水的泥炭腐殖质处理及其有机金属残留物热处理技术

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

A novel, alternative method for acid rock drainage (ARD) remediation and metal recovery has been developed that uses a peat-humic agent (PHA) created by mechanical, chemical, and thermobaric treatment of peat from the Krugloe deposit (Novosibirsk region, Russia). The PHA effectively neutralised moderately acidic ARD and removed potential pollutants (e.g. Fe, Al, Zn, Cu, Pb, Cd, Ni, Co, and Hg), forming metal–organic residues. The organic matter can be removed completely from the metal–organic residues by heating them at 450–500 °C. After this treatment, the metal concentrate residues generally contained aggregates (20–350 μm in size), mainly composed of metal oxides and sulphates. Thermal decomposition of the organic matter in the PHA and metal–organic residues is an exothermic process with significant calorific value (9–15 kJ/g).

Zusammenfassung

Eine neuartige, alternative Methode zur Sanierung saurer Sickerwässer und zur Rückgewinnung gelöster Metalle wird vorgestellt. Torf aus der Lagerstätte Krugloe in der Region Novosibirsk (Russland) wurde unter Druck erhitzt und einer mechanischen und chemischen Behandlung unterzogen. Das resultierende Produkt (PAH) neutralisiert moderat saure Sickerwässer und bindet mögliche Schadstoffe (e.g. Fe, Al, Zn, Cu, Pb, Cd, Ni, Co und Hg). Die organische Substanz kann von den metall-organischen Rückständen durch Erhitzen auf 450–500 Grad Celsius vollständig entfernt werden. Das residuale Konzentrat enthält Aggregate einer Größe zwischen 20 bis 350 μm, welche überwiegend aus Metalloxyden und Sulphaten bestehen. Die thermische Zersetzung der organischen Substanz in PAH und den metall-organischen Rückständen ist exothermisch und erbringt eine Verbrennungswärme von 9–15 kJ/g.

Resumen

Un nuevo método alternativo para la remediación de drenaje ácido de roca (ARD) y para la recuperación de los metales, ha sido desarrollado usando un agente turba-húmico (PHA) creado por tratamiento mecánico, quiímico y termobárico de turba del depósito Krugloe (región Novosibirsk, Rusia). El PHA efectivamente neutralizó ARD moderamente ácida y removió los contaminantes potenciales (Fe, Al, Zn, Cu, Pb, Cd, Ni, Co y Hg), formando residuos organo-metálicos. La materia orgánica puede ser removida completamente de los residuos organo-metálicos por calentamiento a 450–500oC. Después del tratamiento, los residuos concentrados de metal generalmente contienen agregados (20–350 μm en tamaño), principalmente compuestos de sulfatos y óxidos del metal. La descomposición térmica de la materia orgánica en el PHA y en los residuos organo-metálicos, es un proceso exotérmico con valor calorífico significante (9–15 kJ/g).

摘要

利用一种由Krugloe矿床(新西伯利亚地区,俄罗斯)泥炭经机器、化学和温压处理制成的泥炭腐殖质(PHA)作为新型酸性矿山废水处理和金属回收处理材料。泥炭腐殖质(PHA)能有效中和中等酸性废水并去除铁、铝、锌、铜、铅、镉、镍、钴、汞等潜在污染物;进一步将有机金属残留物加热到450–500°可完全去除有机成分。最终,浓缩的金属残留物主要为粒径20–350 μm的金属氧化物及硫酸盐团聚物。泥炭腐殖质和有机金属残留物中有机物分解为高热值的放热过程(9–15 kJ/g).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aleksandrova LN (1980) Organic substance of soil and processes of its transformation. Nauka, Moscow (in Russian)

    Google Scholar 

  • Alekseenko VA (2000) Ecological Geochemistry. LOGOS, Moscow (in Russian)

    Google Scholar 

  • Ball JW, Nordstrom DK (1991) User’s manual for WATERQ4F, with revised thermodynamic date base and test cases for calculating speciation of major, trace, and redox elements in natural waters. Menlo Park

  • Blair RD, Cherry JA, Lim TP, Vivyurka AJ (1980) Groundwater monitoring and contaminant occurrence at an abandoned tailings area. In: Proceedings of 1st international conference on uranium mine waste disposal, Elliot Lake, Ontario, p 911–944

  • Bogush AA, Voronin VG (2011) Application of a peat-humic agent for treatment of acid mine drainage. Mine Water Environ 30:185–190

    Article  Google Scholar 

  • Bogush AA, Moroz TN, Galkova OG, Maskenskaya OM (2007) Application of natural material for drainage water treatment. Ecol Ind Prod 2:63–69 (Russian, publ by VIMI)

    Google Scholar 

  • Bogush AA, Galkova OG, Ishuk NV (2012) Geochemical barriers to elemental migration in sulphide-rich tailings: three case studies from Western Siberia. Mineral Mag 76(7):2693–2707

    Article  Google Scholar 

  • Buffle J, Deladoey P, Greter FL, Heardi W (1980) Study of the complex formation of copper (II) by humic and fulvic substances. Anal Chim Acta 116:255–274

    Article  Google Scholar 

  • Coulton R, Bullen C, Hallet C (2003) The design and optimization of active mine water treatment plants. Land Contam Reclam 11:273–279

    Article  Google Scholar 

  • Cravotta CA, Ward SJ (2008) Downflow limestone beds for treatment of net-acidic, oxic, iron-laden drainage from a flooded anthracite mine, Pennsylvania, USA: 1. Field evaluation. Mine Water Environ 27:67–85

    Article  Google Scholar 

  • Da Rosa CD, Lyon JS, Hocker PM (1997) Golden dreams, poisoned streams. Mineral Policy Center, Washington DC

    Google Scholar 

  • Gaikwad RW, Gupta DV (2008) Review on removal of heavy metals from acid mine drainage. Appl Ecol Environ Res 6(3):81–98

    Article  Google Scholar 

  • GSDEP (1993) General standards for discharge of environmental pollutants (Part A: effluents). Environmental standards, GSR 801 (E), dated Dec. 31 1986

  • Gusek JJ (2008) Passive treatment 101: an overview of the technologies. US EPA/National groundwater association remediation of abandoned mined lands conference, Denver

  • Hedin RS, Nairn RW, Kleinmann RLP (1994) Passive treatment of coal mine drainage. US Bureau of Mines IC 9389, US Deparment of the Interior, Washington, DC

  • Hudson-Edwards KA, Jamieson HE, Lottermoser BG (2011) Mine wastes: past, present, future. Elements 7:375–380

    Article  Google Scholar 

  • Jambor JL, Blowes DW, Ritchie AIM (eds) (2003) Environmental aspects of mine wastes. Mineral Association of Canada short course series 31, Quebec

  • Johnson DB (2000) Biological removal of sulfurous compounds from inorganic wastewaters. In: Lens P, Hulshoff PL (eds) Environmental technologies to treat sulfur pollution: principles and engineering. International Association on Water Quality, London, pp 175–206

    Google Scholar 

  • Johnson DB, Hallberg KB (2002) Pitfalls of passive mine water treatment. Rev Environ Sci Biotechnol 1:335–343

    Article  Google Scholar 

  • Johnson BD, Hallberg KB (2005) Acid mine drainage remediation options: a review. Sci Total Environ 338:3–14

    Article  Google Scholar 

  • Kirby CS, Cravotta CA (2005a) Net alkalinity and net acidity 1: theoretical considerations. Appl Geochem 20:1920–1940

    Article  Google Scholar 

  • Kirby CS, Cravotta CA (2005b) Net alkalinity and net acidity 2: practical considerations. Appl Geochem 20:1941–1964

    Article  Google Scholar 

  • Kleinmann RLP, Hedin RS, Nairn RW (1998) Treatment of mine drainage by anoxic limestone drains and constructed wetlands. In: Geller W, Klapper H, Salomons W (eds) Acidic mining lakes: acid mine drainage, limnology and reclamation. Springer, Berlin, pp 303–319

    Chapter  Google Scholar 

  • Livens FR (1991) Chemical reactions of metals with humic material. Environ Pollut 70:183–208

    Article  Google Scholar 

  • Lottermoser BG (2007) Mine wastes: characterization, treatment and environmental impacts, 2nd edn. Springer, Berlin

    Google Scholar 

  • Masters GM, Ela WP (2007) Introduction to environmental engineering and science, 3rd edn. Prentice Hall, Upper Saddle river

    Google Scholar 

  • Panin MS (2002) Chemical ecology. Semipalatinsk State University Press, Semipalatinsk (in Russian)

    Google Scholar 

  • Nordstrom DK (2000) Advances in the hydrochemistry and microbiology of acid mine waters. Intern Geol Rev 42:499–515

    Article  Google Scholar 

  • Nordstrom DK (2011) Mine waters: acidic to circumneutral. Elements 7:393–398

    Article  Google Scholar 

  • Nordstrom DK, Alpers CN (1999) Geochemistry of acid mine waters. In: Plumlee GS, Logsdon MJ (eds) Reviews in Economic Geology, vol 6A. pp 133–160

  • Nordstrom DK, Alpers CN, Ptacek CJ, Blowes DW (2000) Negative pH and extremely acidic mine waters from Iron Mountain, California. Environ Sci Technol 34:254–258

    Article  Google Scholar 

  • Orlov DS (1990) Humic acids of soil and general theory of ulmification. Moscow State University Press, Moscow (in Russian)

    Google Scholar 

  • Orlov DS, Osipova NN (1988) Infra-red spectrums of soil and soil components. Moscow State University Press, Moscow (in Russian)

    Google Scholar 

  • Perminova IV (2000) Analysis, classification and predictive modelling of properties of humic substances. Dr. Sci. Dissertation, Moscow State University, Russia (in Russian)

  • Perminova IV (2008) Humic substances—a challenge to chemists XXI century. Chem Life 1:50–56 (in Russian)

    Google Scholar 

  • SanPiN (Sanitary Regulations and Government Standards for Drinking Water) (2002) 2.1.4.1074–01. Ministry of Health of the Russian Federation, Moscow, Russia (in Russian)

  • Skousen J, Ziemkiewicz P (1995) Acid mine drainage control and treatment. National Research Centre for Coal and Energy, National Mine Land Reclamation Center, West Virginia University, Morgantown, WV, USA

  • Smith KS, Figueroa LA, Plumlee GS (2013) Can treatment and disposal costs be reduced through metal recovery? In: Brown A, Figueroa L, Wolkersdorfer C (eds) Reliable mine water technology, vol I. International Mine Water Association, Wendelstein, pp 729–735

    Google Scholar 

  • Sobolewski A, Gormely L, Kistritz RU (1995) Copper removal from mine drainage by an experimental wetland at Bell Copper Mine. In: Smithers BC (eds) Proceedings of the Sudbury’95, mining and the environment, Sudbury, pp 683–692

  • Stevenson FJ (1994) Humus chemistry—genesis, composition, reactions, 2nd edn. Wiley, New York City

    Google Scholar 

  • Taylor J, Pape S, Murphy N (2005) A summary of passive and active treatment technologies for acid and metalliferous drainage (AMD). In: Proceedings of the 5th Australian workshop on acid drainage, earth systems, Australian Centre for Minerals Extension and Research, Fremantle, Australia

  • Tchobanoglaus G, Kreith F (2002) Handbook of solid waste management, 2nd edn. McGraw-Hill, New York City

    Google Scholar 

  • Tipping E, Hurley MA (1992) A unifying model of cation binding by humic substances. Geochim Cosmochim Acta 56:3627–3641

    Article  Google Scholar 

  • Varshal GM, Velyuhanova TK, Koshcheeva IJ (1993) Geochemical role of humic acids in migration of elements. In: Proceedings of the conference on humic substances in biosphere, Moscow, pp 97–117 (in Russian)

  • White WM (2013) Geochemistry. Wiley-Blackwell, West Sussex

    Google Scholar 

  • Williams RE (1975) Waste production and disposal in mining, milling and metallurgical industries. Miller Freeman Publ, San Francisco

    Google Scholar 

  • Wilson LJ (1994) Canada-wide survey of acid mine drainage characteristics. mineral sciences laboratories div report MSL 94-32 (CR), MEND project 3.22.1, Canada

  • GARD/INAP. The global acid rock drainage guide/the international network for acid prevention. http://www.gardguide.com/index.php?title=Main_Page

  • Younger PL (2000) The adoption and adaptation of passive treatment technologies for mine waters in the United Kingdom. Mine Water Environ 19:84–97

    Article  Google Scholar 

  • Younger PL, Banwart SA, Hedin RS (2002) Mine water: hydrology, pollution, remediation. Kluwer, Amsterdam

    Book  Google Scholar 

  • Younger PL, Jayaweera A, Elliot A, Wood R, Amos P, Daugherty AJ, Martin A, Bowden L, Aplin AC, Johnson DB (2003) Passive treatment of acidic mine waters in subsurface flow systems: exploring RAPS and permeable reactive barriers. Land Contam Reclam 11:127–135

    Article  Google Scholar 

  • Zinck J, Griffith W (2013) Review of mine drainage treatment and sludge management operations. CANMET-MMSL report 10-058(CR), MEND report 3.43.1, Canada

  • Zipper C, Skousen J, Jage C (2011) Passive treatment of acid mine drainage. virginia cooperative extension, Powell River Project—reclamation guidelines for surface mined land, Publ 460-133

Download references

Acknowledgments

Special thanks are due to our colleagues (S. Bortnikova, E. Lazareva, O. Galkova, N. Ishuk, L. Ivanova, Zh. Badmaeva and M. Gustaytis) from the Institute of Geology and Mineralogy SB RAS for help in the field and lab work. Grateful acknowledgement for proofreading and correcting of the English go to Professor W. Mike Edmunds. The author thanks the editors and the anonymous reviewers for comments, questions, and careful and helpful reviews. This research was financially supported by the Russian Foundation for Basic Research (Grant 11-05-12038-ofi-m-2011) and OPTEC LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna A. Bogush.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 29 kb)

Supplementary material 2 (DOCX 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogush, A.A., Voronin, V.G., Tikhova, V.D. et al. Acid Rock Drainage Remediation and Element Removal Using a Peat-Humic Agent with Subsequent Thermal Treatment of the Metal–Organic Residue. Mine Water Environ 35, 536–546 (2016). https://doi.org/10.1007/s10230-015-0380-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-015-0380-2

Keywords

Navigation