Skip to main content

Advertisement

Log in

Geoadditive modeling for extreme rainfall data

  • Original Paper
  • Published:
AStA Advances in Statistical Analysis Aims and scope Submit manuscript

Abstract

Extreme value models and techniques are widely applied in environmental studies to define protection systems against the effects of extreme levels of environmental processes. Regarding the matter related to the climate science, a certain importance is covered by the implication of changes in the hydrological cycle. Among all hydrologic processes, rainfall is a very important variable as it is strongly related to flood risk assessment and mitigation, as well as to water resources availability and drought identification. We implement here a geoadditive model for extremes assuming that the observations follow a generalized extreme value distribution with spatially dependent location. The analyzed territory is the catchment area of the Arno River in Tuscany in Central Italy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Burlando, P., Rosso, R.: Effects of transient climate change on basin hydrology. Precipitation scenarios for the Arno river, central Italy. Hydrol. Process. 16, 1151–1175 (2002)

    Article  Google Scholar 

  • Caporali, E., Rinaldi, M., Casagli, N.: The Arno river floods. G. Geol. Appl. 1, 177–192 (2005). doi:10.1474/GGA.2005-01.0-18.0018

    Google Scholar 

  • Chavez-Demoulin, V., Davison, A.C.: Generalized additive modelling of sample extremes. Appl. Stat. 54, 207–222 (2005)

    MathSciNet  MATH  Google Scholar 

  • Coles, S.G.: An Introduction to Statistical Modeling of Extreme Values. Springer, London (2001)

    MATH  Google Scholar 

  • Cooley, D., Sain, S.: Spatial hierarchical modeling of precipitation extremes from a regional climate model. J. Agric. Biol. Environ. Stat. 15(3), 381–402 (2010)

    Article  MathSciNet  Google Scholar 

  • Cooley, D., Nychka, D., Naveau, P.: Bayesian spatial modeling of extreme precipitation return levels. J. Am. Stat. Assoc. 102(479), 824–840 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Davison, A.C., Ramesh, N.I.: Local likelihood smoothing of sample extremes. J. R. Stat. Soc. B 62(3), 191–208 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Davison, A.C., Padoan, A., Ribatet, M.: Statistical modelling of spatial extremes (with discussion). Stat. Sci. (2012, forthcoming). http://www.imstat.org/sts/future_papers.html

  • Fatichi, S., Caporali, E.: A comprehensive analysis of changes in precipitation regime in Tuscany. Int. J. Climatol. 29(13), 1883–1893 (2009)

    Article  Google Scholar 

  • Gelman, A.: Prior distributions for variance parameters in hierarchical models. Bayesian Anal. 1(3), 515–533 (2006)

    MathSciNet  Google Scholar 

  • Kammann, E.E., Wand, M.P.: Geoadditive models. Appl. Stat. 52, 1–18 (2003)

    MathSciNet  MATH  Google Scholar 

  • Katz, R.W., Brown, B.G.: Extreme events in a changing climate: variability is more important than averages. Clim. Change 21, 289–302 (1992)

    Article  Google Scholar 

  • Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, New York (1990)

    Book  Google Scholar 

  • Marley, J., Wand, M.P.: Non-standard semiparametric regression via BRugs. J. Stat. Softw. 37(5), 1–30 (2010)

    Google Scholar 

  • Neville, S.E., Wand, M.P.: Generalised extreme value geoadditive models via variational Bayes. Procedia Environ. Sci. 3, 8–13 (2011)

    Article  Google Scholar 

  • Padoan, S.A.: Computational methods for complex problems in extreme value theory. Ph.D. thesis, Ph.D. in Statistical Science, Department of Statistical Science, University of Padova (2008)

  • Padoan, S.A., Wand, M.P.: Mixed model-based additive models for sample extremes. Stat. Probab. Lett. 78, 2850–2858 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Padoan, S.A., Ribatet, M., Sisson, S.A.: Likelihood-based inference for max-stable processes. J. Am. Stat. Assoc. 105(489), 263–277 (2010). doi:10.1198/jasa.2009.tm08577

    Article  MathSciNet  Google Scholar 

  • R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2011). URL http://www.R-project.org/. ISBN 3-900051-07-0

    Google Scholar 

  • Ruppert, D., Wand, M.P., Carroll, R.J.: Semiparametric Regression. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  • Sang, H., Gelfand, A.E.: Hierarchical modeling for extreme values observed over space and time. Environ. Ecol. Stat. 16, 407–426 (2009)

    Article  MathSciNet  Google Scholar 

  • Thomas, A., O’Hara, B., Ligges, U., Sturtz, S.: Making BUGS open. R News 6(1), 12–17 (2006)

    Google Scholar 

  • World Meteorological Organization: Guide to climatological practices. Tech. Rep. 100, Secretariat of the World Meteorological Organization, Geneva, Switzerland (1983)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Petrucci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bocci, C., Caporali, E. & Petrucci, A. Geoadditive modeling for extreme rainfall data. AStA Adv Stat Anal 97, 181–193 (2013). https://doi.org/10.1007/s10182-012-0192-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10182-012-0192-7

Keywords

Navigation