Skip to main content

Advertisement

Log in

Scleroderma dermal fibroblasts overexpress vascular endothelial growth factor due to autocrine transforming growth factor β signaling

  • Original Article
  • Published:
Modern Rheumatology

Abstract

Objectives

Overexpression of vascular endothelial growth factor (VEGF) in scleroderma (SSc) skin may play a role in the pathogenesis of the disease. Our study was undertaken to evaluate whether dermal fibroblasts function as one of the sources of the increased VEGF in SSc, and to clarify its mechanism.

Methods

Protein and mRNA levels of VEGF were analyzed using immunoblotting, enzyme-linked immunosorbent assay, and real-time PCR. The DNA-binding ability of Smad3 was evaluated by DNA affinity precipitation.

Results

VEGF mRNA expression in vivo was increased in SSc skin compared to skin with other collagen diseases. Expression of VEGF protein and mRNA in cultured SSc dermal fibroblasts was constitutively and significantly upregulated. Ectopic TGF-β stimulation induced VEGF synthesis in normal fibroblasts, and TGF-β knockdown normalized the upregulated VEGF levels in SSc fibroblasts. Furthermore, Smad3 overexpression induced VEGF levels. We found that bp −532 to −521 on the VEGF promoter is a putative binding site for Smads, and that the binding activity of Smad3 to VEGF promoter was constitutively increased in SSc fibroblasts as well as in normal fibroblasts treated with exogenous TGF-β1.

Conclusions

We demonstrated that VEGF were overexpressed due to autocrine TGF-β/Smad signaling in SSc. TGF-β signaling may contribute to the pathogenesis of angiopathy as well as tissue fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mauch C, Kreig T. Fibroblast-matrix interactions and their role in the pathogenesis of fibrosis. Rheum Dis Clin North Am. 1990;16:93–107.

    PubMed  CAS  Google Scholar 

  2. Korn JH. Immunologic aspects of scleroderma. Curr Opin Rheumatol. 1989;1:479–84.

    Article  PubMed  CAS  Google Scholar 

  3. Mauch C, Kozlowska E, Eckes B, Krieg T. Altered regulation of collagen metabolism in scleroderma fibroblasts grown within three-dimensional collagen gels. Exp Dermatol. 1992;1:185–90.

    Article  PubMed  CAS  Google Scholar 

  4. Jelaska A, Arakawa M, Broketa G, Korn JH. Heterogeneity of collagen synthesis in normal and systemic sclerosis skin fibroblasts. Increased proportion of high collagen-producing cells in systemic sclerosis fibroblasts. Arthritis Rheum. 1996;39:1338–46.

    Article  PubMed  CAS  Google Scholar 

  5. Asano Y, Ihn H, Yamane K, Jinnin M, Mimura Y, Tamaki K. Involvement of alphavbeta5 integrin-mediated activation of latent transforming growth factor beta1 in autocrine transforming growth factor beta signaling in systemic sclerosis fibroblasts. Arthritis Rheum. 2005;52:2897–905.

    Article  PubMed  CAS  Google Scholar 

  6. Massagué J. The transforming growth factor-beta family. Annu Rev Cell Biol. 1990;6:597–641.

    Article  PubMed  Google Scholar 

  7. Leroy EC, Smith EA, Kahaleh MB, Trojanowska M, Silver RM. A strategy for determining the pathogenesis of systemic sclerosis. Is transforming growth factor beta the answer? Arthritis Rheum. 1989;32:817–25.

    PubMed  CAS  Google Scholar 

  8. Asano Y, Ihn H, Yamane K, Kubo M, Tamaki K. Impaired Smad7-Smurf-mediated negative regulation of TGF-beta signaling in scleroderma fibroblasts. J Clin Invest. 2004;113:253–64.

    PubMed  CAS  Google Scholar 

  9. Asano Y, Ihn H, Yamane K, Jinnin M, Tamaki K. Increased expression of integrin alphavbeta5 induces the myofibroblastic differentiation of dermal fibroblasts. Am J Pathol. 2006;168:499–510.

    Article  PubMed  CAS  Google Scholar 

  10. LeRoy EC. Increased collagen synthesis by scleroderma skin fibroblasts in vitro: a possible defect in the regulation or activation of the scleroderma fibroblast. J Clin Invest. 1974;54:880–9.

    Article  PubMed  CAS  Google Scholar 

  11. Jimenez SA, Feldman G, Bashey RI, Bienkowski R, Rosenbloom J. Co-ordinate increase in the expression of type I and type III collagen genes in progressive systemic sclerosis fibroblasts. Biochem J. 1986;237:837–43.

    PubMed  CAS  Google Scholar 

  12. Mori Y, Chen SJ, Varga J. Expression and regulation of intracellular SMAD signaling in scleroderma skin fibroblasts. Arthritis Rheum. 2003;48:1964–78.

    Article  PubMed  CAS  Google Scholar 

  13. Asano Y, Ihn H, Yamane K, Jinnin M, Mimura Y, Tamaki K. Phosphatidylinositol 3-kinase is involved in alpha2(I) collagen gene expression in normal and scleroderma fibroblasts. J Immunol. 2004;172:7123–35.

    PubMed  CAS  Google Scholar 

  14. Kikuchi K, Hartl CW, Smith EA, LeRoy EC, Trojanowska M. Direct demonstration of transcriptional activation of collagen gene expression in systemic sclerosis fibroblasts: insensitivity to TGF beta 1 stimulation. Biochem Biophys Res Commun. 1992;187:45–50.

    Article  PubMed  CAS  Google Scholar 

  15. Ihn H, Yamane K, Kubo M, Tamaki K. Blockade of endogenous transforming growth factor beta signaling prevents up-regulated collagen synthesis in scleroderma fibroblasts: association with increased expression of transforming growth factor beta receptors. Arthritis Rheum. 2001;44:474–80.

    Article  PubMed  CAS  Google Scholar 

  16. Jinnin M, Ihn H, Mimura Y, Asano Y, Tamaki K. Potential regulatory elements of the constitutive up-regulated alpha2(I) collagen gene in scleroderma dermal fibroblasts. Biochem Biophys Res Commun. 2006;343:904–9.

    Article  PubMed  CAS  Google Scholar 

  17. Ferrara N. The role of VEGF in the regulation of physiological and pathological angiogenesis. EXS 2005;94:209–31.

    Google Scholar 

  18. Shibuya M, Claesson-Welsh L. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res. 2006;312:549–60.

    Article  PubMed  CAS  Google Scholar 

  19. Kikuchi K, Kubo M, Kadono T, Yazawa N, Ihn H, Tamaki K. Serum concentrations of vascular endothelial growth factor in collagen diseases. Br J Dermatol 1998;139:1049–51

    Google Scholar 

  20. Choi JJ, Min DJ, Cho ML, Min SY, Kim SJ, Lee SS, et al. Elevated vascular endothelial growth factor in systemic sclerosis. J Rheumatol. 2003;30:1529–33.

    PubMed  CAS  Google Scholar 

  21. Papaioannou AI, Zakynthinos E, Kostikas K, Kiropoulos T, Koutsokera A, Ziogas A, et al. Serum VEGF levels are related to the presence of pulmonary arterial hypertension in systemic sclerosis. BMC Pulm Med. 2009;9:18.

    Article  PubMed  Google Scholar 

  22. Distler O, Distler JH, Scheid A, Acker T, Hirth A, Rethage J, et al. Uncontrolled expression of vascular endothelial growth factor and its receptors leads to insufficient skin angiogenesis in patients with systemic sclerosis. Circ Res. 2004;95:109–16.

    Article  PubMed  CAS  Google Scholar 

  23. Davies CA, Jeziorska M, Freemont AJ, Herrick AL. The differential expression of VEGF, VEGFR-2, and GLUT-1 proteins in disease subtypes of systemic sclerosis. Hum Pathol. 2006;37:190–7.

    Article  PubMed  CAS  Google Scholar 

  24. Ihn H, LeRoy EC, Trojanowska M. Oncostatin M stimulates transcription of the human alpha2(I) collagen gene via the Sp1/Sp3-binding site. J Biol Chem. 1997;272:24666–72.

    Article  PubMed  CAS  Google Scholar 

  25. Makino T, Jinnin M, Muchemwa FC, Fukushima S, Kogushi-Nishi H, Moriya C, et al. Basic fibroblast growth factor stimulates the proliferation of human dermal fibroblasts via the ERK1/2 and JNK pathways. Br J Dermatol. 2010;162:717–23.

    Article  PubMed  CAS  Google Scholar 

  26. Igata T, Jinnin M, Makino T, Moriya C, Muchemwa FC, Ishihara T, et al. Up-regulated type I collagen expression by the inhibition of Rac1 signaling pathway in human dermal fibroblasts. Biochem Biophys Res Commun. 2010;393:101–5.

    Article  PubMed  CAS  Google Scholar 

  27. Nakashima T, Jinnin M, Yamane K, Honda N, Kajihara I, Makino T, et al. Impaired IL-17 signaling pathway contributes to the increased collagen expression in scleroderma fibroblasts. J Immunol. 2012;188:3573–83.

    Article  PubMed  CAS  Google Scholar 

  28. McIlhenny C, George WD, Doughty JC. A comparison of serum and plasma levels of vascular endothelial growth factor during the menstrual cycle in healthy female volunteers. Br J Cancer. 2002;86:1786–9.

    Article  PubMed  CAS  Google Scholar 

  29. Xiao Z, Liu X, Henis YI, Lodish HF. A distinct nuclear localization signal in the N terminus of Smad 3 determines its ligand-induced nuclear translocation. Proc Natl Acad Sci USA. 2000;97:7853–8.

    Article  PubMed  CAS  Google Scholar 

  30. Yagi K, Furuhashi M, Aoki H, Goto D, Kuwano H, Sugamura K, et al. c-myc is a downstream target of the Smad pathway. J Biol Chem. 2002;277:854–61.

    Article  PubMed  CAS  Google Scholar 

  31. Asano Y, Ihn H, Jinnin M, Mimura Y, Tamaki K. Involvement of alphavbeta5 integrin in the establishment of autocrine TGF-beta signaling in dermal fibroblasts derived from localized scleroderma. J Invest Dermatol. 2006;126:1761–9.

    Article  PubMed  CAS  Google Scholar 

  32. Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM. Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J. 1998;17:3091–100.

    Article  PubMed  CAS  Google Scholar 

  33. Chen SJ, Yuan W, Mori Y, Levenson A, Trojanowska M, Varga J. Stimulation of type I collagen transcription in human skin fibroblasts by TGF-beta: involvement of Smad 3. J Invest Dermatol. 1999;112:49–57.

    Article  PubMed  CAS  Google Scholar 

  34. Beyer C, Schett G, Gay S, Distler O, Distler JH. Hypoxia. Hypoxia in the pathogenesis of systemic sclerosis. Arthritis Res Ther. 2009;11:220.

    Article  PubMed  Google Scholar 

  35. Ihn H, Yamane K, Asano Y, Jinnin M, Tamaki K. Constitutively phosphorylated Smad3 interacts with Sp1 and p300 in scleroderma fibroblasts. Rheumatology. 2006;45:157–65.

    Article  PubMed  CAS  Google Scholar 

  36. Mulligan-Kehoe MJ, Simons M. Vascular disease in scleroderma: angiogenesis and vascular repair. Rheum Dis Clin North Am. 2008;34:73–9.

    Article  PubMed  Google Scholar 

  37. LeRoy EC. Systemic sclerosis. A vascular perspective. Rheum Dis Clin North Am. 1996;22:675–94.

    Article  PubMed  CAS  Google Scholar 

  38. Ball SG, Shuttleworth CA, Kielty CM. Vascular endothelial growth factor can signal through platelet-derived growth factor receptors. J Cell Biol. 2007;177:489–500.

    Article  PubMed  CAS  Google Scholar 

  39. Detmar M, Brown LF, Berse B, Jackman RW, Elicker BM, Dvorak HF, et al. Hypoxia regulates the expression of vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) and its receptors in human skin. J Invest Dermatol. 1997;108:263–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mr. Keitaro Yamane, Ms. Junko Suzuki, and Ms. Chiemi Shiotsu for their valuable technical assistance. This study was supported in part by a Grant for Scientific Research from the Japanese Ministry of Education, Science, Sports and Culture, and by a research project on intractable diseases from the Japanese Ministry of Health, Labour and Welfare.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masatoshi Jinnin.

About this article

Cite this article

Kajihara, I., Jinnin, M., Honda, N. et al. Scleroderma dermal fibroblasts overexpress vascular endothelial growth factor due to autocrine transforming growth factor β signaling. Mod Rheumatol 23, 516–524 (2013). https://doi.org/10.1007/s10165-012-0698-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10165-012-0698-6

Keywords

Navigation