Skip to main content
Log in

Ontogenetic variation in the predatory behavior of the orb-weaver spider Azilia histrio: detecting changes in behavioral organization

  • Article
  • Published:
Journal of Ethology Aims and scope Submit manuscript

Abstract

Spiders in different ontogenetic stages vary in their predatory behavior. The more advanced the development of an individual, the more similar is its behavior to that of the adult. Studies have shown that the behavior of subadult and adult spiders are similar, but the similarity may be superficial, since the analytical approach usually adopted cannot evaluate important features, such as the organization of the foraging system. Systems are characterized by a modular organization, which needs appropriate analytical approaches to be properly evaluated. We tested whether there is a difference between the predatory sequences of adult and subadult spiders (Azilia histrio) and identified the most appropriate methodological procedure for the characterization of this difference. We used multivariate analysis, contrasting an approach that focuses on frequency of behavioral categories, taken independently, with an approach that directly evaluates the sequential organization of behavioral categories, thus allowing the analysis of the structure of the foraging system. While the independent variables approach did not show differences between ontogenetic stages, the organizational analytical approach resulted in a number of important differences between the ontogenetic stages. We describe the foraging system for the first time in the genus Azilia, while discussing hypotheses for the observed organizational change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. We have not performed a complete revision of the subject, but any attempt to completeness will inevitably be an underestimate, simply because of the difficulty of publishing negative results.

  2. Note that we used Bonferroni’s correction, which decreased the p value by a factor of 25 (alpha equal to 0.002).

References

  • Anotaux M, Toscani C, Leborgne R, Châline N, Pasquet A (2014) Aging and foraging efficiency in an orb-web spider. J Ethol. doi:10.1007/s10164-014-0404-6

    Google Scholar 

  • Cárdenas M, Šedo O, Pekár S (2014) Is there ontogenetic shift in the capture traits of a prey-specialized ant-eating spider? J Zool 293:234–242

    Article  Google Scholar 

  • Castanho LM, Oliveira PS (1997) Biology and behaviour of the Neotropical ant-mimicking spider Aphantochilus rogersi (Araneae: Aphantochilidae): nesting, maternal care and ontogeny of ant-hunting techniques. J Zool 242:643–650

    Article  Google Scholar 

  • Eberhard WG (1975) The ‘inverted ladder’ orb web of Scoloderus sp. and the intermediate orb of Eustala(?) sp. Araneae: Araneidae. J Nat Hist 9:93–106

    Article  Google Scholar 

  • Eberhard WG (1977) The webs of newly emerged Uloborus diversus and of a male Uloborus sp. (Araneae: Uloboridae). J Arachnol 4:201–206

    Google Scholar 

  • Eberhard WG (1980) The natural history and behaviour of the bolas spider Mastophora dizzydeani sp. n. (Araneidae). Psyche 87:143–169

    Article  Google Scholar 

  • Eberhard WG (1990) Function and phylogeny of spider webs. Annu Rev Ecol Syst 21:341–372

    Article  Google Scholar 

  • Edwards GB, Jackson RR (1994) The role of experience in the development of predatory behavior in Phidippus regius, a jumping spider (Araneae, Salticidae) from Florida. New Zeal J Zool 21:269–277

    Article  Google Scholar 

  • Foster DJ, Podos J, Hendry APA (2008) Geometric appraisal of beak shape in Darwin’s finches. J Evol Biol 21:275–283

    Google Scholar 

  • Heiling AM, Herberstein ME (1999) The role of experience in web-building spiders (Araneidae). An Cog 2:171–177

    Article  Google Scholar 

  • Hénaut Y, Machkour-M’rabet S, Lachaud JP (2013) The role of learning in risk-avoidance strategies during spider–ant interactions. Anim Cogn. doi:10.1007/S10071-013-0651-X

    PubMed  Google Scholar 

  • Jackson RR, Brassington RJ, Rowe RJ (1990) Anti-predator defences of Pholcus phalangioides (Araneae, Pholcidae), a web-building and web-invading spider. J Zool 220:543–552

    Article  Google Scholar 

  • Japyassú HF, Ades C (1998) From complete orb to semi-orb webs: developmental transitions in the web of Nephilengys cruentata (Araneae: Tetragnathidae). Behav 135:931–956

    Article  Google Scholar 

  • Japyassú HF, Caires RA (2008) Hunting tactics in a cobweb spider (Araneae: Theridiidae) and the evolution of behavioral plasticity. J Insect Behav 21:258–284

    Article  Google Scholar 

  • Japyassú HF, Malange J (2014) Plasticity, stereotypy, intra-individual variability and personality: handle with care. Neotrop Behav 109:40–47

    Google Scholar 

  • Japyassú HF, Alberts CC, Izar P, Sato T (2006) EthoSeq: a tool for phylogenetic analysis and data mining on behavioural sequences. Behav Res Methods 38:549–556

    Article  PubMed  Google Scholar 

  • Kaston BJ (1972) Web making by young Peucetia viridans (Hentz) (Araneae: Oxyopidae). Notes Arachnol Southwest 3:6–7

    Google Scholar 

  • Malange J, Alberts CC, Oliveira ES, Japyassú HF (2013) The evolution of behavioural systems: a study of grooming in rodents. Behav. doi:10.1163/1568539X-00003096

    Google Scholar 

  • Murakami Y (1983) Factors determining the prey size of the orb-web spider, Argiope amoena (L. Koch) (Argiopidae). Oecol 57:72–77

    Article  Google Scholar 

  • Nakata K (2010) Attention focusing in a sit-and-wait forager: a spider controls its prey-detection ability in different web sectors by adjusting thread tension. Proc R Soc Lond B Biol Sci 277:29–33

    Article  Google Scholar 

  • Nakata K (2012) Plasticity in an extended phenotype and reversed up-down asymmetry of spider orb webs. An Behav 83:821–826

    Article  Google Scholar 

  • Nogueira AA, Pinto-Da-Rocha R, Brescovit AD (2006) Comunidade de aranhas orbitelas (Araneae, Arachnida) na região da reserva florestal do Morro Grande, Cotia, São Paulo, Brasil. Biota Neotrop. doi:10.1590/S1676-06032006000200010

  • Peaslee JE, Peck WB (1983) The biology of Octonoba octonarius (Muma) (Araneae, Uloboridae). J. Arachnol 11:51–67

    Google Scholar 

  • Pekár S (2004) Predatory behavior of two European ant-eating spiders (Araneae, Zodariidae). J Arachnol 32:31–41

    Article  Google Scholar 

  • Pekár S, Cárdenas M (2015) Innate prey preference overridden by familiarisation with detrimental prey in a specialised myrmecophagous predator. Sci Nat 102:1–6

    Article  Google Scholar 

  • Pekár S, Toft S (2015) Trophic specialisation in a predatory group: the case of prey-specialised spiders (Araneae). Biol Rev 90:744–761

    Article  Google Scholar 

  • Pekár S, Šedo O, Líznarová E, Korenko S, Zdráhal Z (2014) David and Goliath: potent venom of an ant-eating spider (Araneae) enables capture of a giant prey. Naturwissenschaften 101:533–540

    Article  PubMed  Google Scholar 

  • Pesek MF, Hebets EA, Sullivan-Beckers L, Fowler-Finn KD (2013) Foreleg ornaments do not hinder foraging success in brush-legged wolf spiders. J Insect Behav 26:837–849

    Article  Google Scholar 

  • Ridgel AL, Ritzmann RE, Scheafer PL (2003) Effects of aging on behaviour and leg kinematics during locomotion in two species of cockroach. J Exp Biol 206:4453–4465

    Article  CAS  PubMed  Google Scholar 

  • Robinson MH (1982) Courtship and mating behavior in spiders. Annu Rev Entomol 27:1–20

    Article  Google Scholar 

  • Robinson MH, Lubin YD (1979) Specialists and generalist: the ecology and behaviour of some web-building spiders from Papua New Guinea II. Psechrus argentatus and Fecenia sp. (Araneae: Psechridae). Pac Insects 21:133–164

    Google Scholar 

  • Sensenig AT, Agnarsson I, Blackledge TA (2011) Adult spiders use tougher silk: ontogenetic changes in web architecture and silk biomechanics in the orb-weaver spider. J Zool 285:28–38

    Google Scholar 

  • Turner J, Vollrath F, Hesselberg T (2011) Wind speed affects prey-catching behavior in an orb web spider. Naturwissenschaften 98:1063–1067

    Article  CAS  PubMed  Google Scholar 

  • Viera C (1986) Comportamiento de captura de Metepeira sp. A (Araneae: Araneidae) sobre Acromyrmex sp. (Hymenoptera: Formicidae) em condiciones experimentales. Aracnol 6:1–8

    Google Scholar 

  • Viera C (1994) Analisis del comportamento depredador de Metepeira seditiosa (Keyserling) (Araneae, Araneidae) em condiciones experimentales. Aracnol 8:1–9

    Google Scholar 

  • Viera C, Costa FG (1988) Analisis del comportamiento de captura de presas por machos adultos de Metepeira sp. A (Araneae, Araneidae), utilizando telas de juveniles y hembras adultas coespecificos. J Arachnol 16:141–152

    Google Scholar 

  • Walsh B, Blows MW (2009) Abundant genetic variation + strong selection = multivariate genetic constraints: a geometric view of adaptation. Annu Rev Ecol Evol Syst 40:41–59

    Article  Google Scholar 

  • Watanabe T (2000) Web tuning of an orb-web spider, Octonoba sybotides, regulates prey-catching behaviour. Proc R Soc Lond B Biol Sci 267:565–569

    Article  CAS  Google Scholar 

  • Witt PN, Rovner JS (2014) Spider communication: mechanisms and ecological significance. Princeton University Press, Princeton

    Google Scholar 

Download references

Acknowledgments

We thank the Federal University of Bahia, the Foundation for Research Support of the State of Bahia, and the National Council for Scientific and Technological Development for funding this study (Grants BOL1401/2011, APP0049/2009, PNX0016/2009 and PDE232691/2014-2); the Brazilian Institute of Environment and Renewable Natural Resources and the State Secretariat of the Environment of Bahia for logistical support; Rio Tinto and Odebrecht for providing the cars; and Antônio Brescovit for identifying the spiders. We also thank Carlos Frederico Rocha, Thiago Amorim, Catarina da Rocha Marcolin and Stephen Francis Ferrari for useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luara Tourinho.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 562 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tourinho, L., de Almeida Mendonça, A. & Japyassú, H.F. Ontogenetic variation in the predatory behavior of the orb-weaver spider Azilia histrio: detecting changes in behavioral organization. J Ethol 34, 219–229 (2016). https://doi.org/10.1007/s10164-016-0467-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10164-016-0467-7

Keywords

Navigation