Skip to main content

Advertisement

Log in

Distribution of Na,K-ATPase α Subunits in Rat Vestibular Sensory Epithelia

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

ABSTRACT

The afferent encoding of vestibular stimuli depends on molecular mechanisms that regulate membrane potential, concentration gradients, and ion and neurotransmitter clearance at both afferent and efferent relays. In many cell types, the Na,K-ATPase (NKA) is essential for establishing hyperpolarized membrane potentials and mediating both primary and secondary active transport required for ion and neurotransmitter clearance. In vestibular sensory epithelia, a calyx nerve ending envelopes each type I hair cell, isolating it over most of its surface from support cells and posing special challenges for ion and neurotransmitter clearance. We used immunofluorescence and high-resolution confocal microscopy to examine the cellular and subcellular patterns of NKAα subunit expression within the sensory epithelia of semicircular canals as well as an otolith organ (the utricle). Results were similar for both kinds of vestibular organ. The neuronal NKAα3 subunit was detected in all afferent endings—both the calyx afferent endings on type I hair cells and bouton afferent endings on type II hair cells—but was not detected in efferent terminals. In contrast to previous results in the cochlea, the NKAα1 subunit was detected in hair cells (both type I and type II) but not in supporting cells. The expression of distinct NKAα subunits by vestibular hair cells and their afferent endings may be needed to support and shape the high rates of glutamatergic neurotransmission and spike initiation at the unusual type I-calyx synapse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

REFERENCES

  • Arystarkhova E, Sweadner KJ (1996) Isoform-specific monoclonal antibodies to Na,K-ATPase alpha subunits. Evidence for a tissue-specific post-translational modification of the alpha subunit. J Biol Chem 271:23407–23417

    Article  PubMed  CAS  Google Scholar 

  • Beart PM, O’Shea RD (2007) Transporters for L-glutamate: an update on their molecular pharmacology and pathological involvement. Br J Pharmacol 150:5–17

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Beisel KW, Rocha-Sanchez SM, Morris KA, Nie L, Feng F, Kachar B, Yamoah EN, Fritzsch B (2005) Differential expression of KCNQ4 in inner hair cells and sensory neurons is the basis of progressive high-frequency hearing loss. J Neurosci 25:9285–9293

    Article  PubMed  CAS  Google Scholar 

  • Blanco G, Sanchez G, Melton RJ, Tourtellotte WG, Mercer RW (2000) The alpha4 isoform of the Na,K-ATPase is expressed in the germ cells of the testes. J Histochem Cytochem 48:1023–1032

    Article  PubMed  CAS  Google Scholar 

  • Contini D, Zampini V, Tavazzani E, Magistretti J, Russo G, Prigioni I, Masetto S (2012) Intercellular K(+) accumulation depolarizes type I vestibular hair cells and their associated afferent nerve calyx. Neuroscience 227:232–246

    Article  PubMed  CAS  Google Scholar 

  • Dalet A, Bonsacquet J, Gaboyard-Niay S, Calin-Jageman I, Chidavaenzi RL, Venteo S, Desmadryl G, Goldberg JM, Lysakowski A, Chabbert C (2012) Glutamate transporters EAAT4 and EAAT5 are expressed in vestibular hair cells and calyx endings. PLoS One 7:e46261

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dememes D, Broca C (1998) Calcitonin gene-related peptide immunoreactivity in the rat efferent vestibular system during development. Brain Res Dev Brain Res 108:59–67

    Article  PubMed  CAS  Google Scholar 

  • Desai SS, Zeh C, Lysakowski A (2005a) Comparative morphology of rodent vestibular periphery. I. Saccular and utricular maculae. J Neurophysiol 93:251–266

    Article  PubMed  Google Scholar 

  • Desai SS, Ali H, Lysakowski A (2005b) Comparative morphology of rodent vestibular periphery. II. Cristae ampullares. J Neurophysiol 93:267–280

    Article  PubMed  Google Scholar 

  • Desmadryl G, Dechesne CJ (1992) Calretinin immunoreactivity in chinchilla and guinea pig vestibular end organs characterizes the calyx unit subpopulation. Exp Brain Res 89:105–108

    Article  PubMed  CAS  Google Scholar 

  • Dobretsov M, Stimers JR (2005) Neuronal function and alpha3 isoform of the Na/K-ATPase. Front Biosci 10:2373–2396

    Article  PubMed  CAS  Google Scholar 

  • Eatock RA, Songer JE (2011) Vestibular hair cells and afferents: two channels for head motion signals. Annu Rev Neurosci 34:501–534

    Article  PubMed  CAS  Google Scholar 

  • Favre D, Scarfone E, Di Gioia G, De Camilli P, Dememes D (1986) Presence of synapsin I in afferent and efferent nerve endings of vestibular sensory epithelia. Brain Res 384:379–382

    Article  PubMed  CAS  Google Scholar 

  • Fernandez C, Baird RA, Goldberg JM (1988) The vestibular nerve of the chinchilla. I. Peripheral innervation patterns in the horizontal and superior semicircular canals. J Neurophysiol 60:167–181

    PubMed  CAS  Google Scholar 

  • Fernandez C, Goldberg JM, Baird RA (1990) The vestibular nerve of the chinchilla. III. Peripheral innervation patterns in the utricular macula. J Neurophysiol 63:767–780

    PubMed  CAS  Google Scholar 

  • Fina M, Ryan A (1994) Expression of mRNAs encoding alpha and beta subunit isoforms of Na,K-ATPase in the vestibular labyrinth and endolymphatic sac of the rat. Mol Cell Neurosci 5:604–613

    Article  PubMed  CAS  Google Scholar 

  • Geering K (2008) Functional roles of Na,K-ATPase subunits. Curr Opin Nephrol Hypertens 17:526–532

    Article  PubMed  CAS  Google Scholar 

  • Goldberg JM (1996) Theoretical analysis of intercellular communication between the vestibular type I hair cell and its calyx ending. J Neurophysiol 76:1942–1957

    PubMed  CAS  Google Scholar 

  • Hasson T, Gillespie PG, Garcia JA, MacDonald RB, Zhao Y, Yee AG, Mooseker MS, Corey DP (1997) Unconventional myosins in inner-ear sensory epithelia. J Cell Biol 137:1287–1307

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hurley KM, Gaboyard S, Zhong M, Price SD, Wooltorton JR, Lysakowski A, Eatock RA (2006) M-like K + currents in type I hair cells and calyx afferent endings of the developing rat utricle. J Neurosci 26:10253–10269

    Article  PubMed  CAS  Google Scholar 

  • Ichimiya I, Adams JC, Kimura RS (1994) Immunolocalization of Na+, K(+)-ATPase, Ca(++)-ATPase, calcium-binding proteins, and carbonic anhydrase in the guinea pig inner ear. Acta Otolaryngol 114:167–176

    Article  PubMed  CAS  Google Scholar 

  • Leonard RB, Kevetter GA (2002) Molecular probes of the vestibular nerve. I. Peripheral termination patterns of calretinin, calbindin and peripherin containing fibers. Brain Res 928:8–17

    Article  PubMed  CAS  Google Scholar 

  • Lim R, Kindig AE, Donne SW, Callister RJ, Brichta AM (2011) Potassium accumulation between type I hair cells and calyx terminals in mouse crista. Exp Brain Res 210:607–621

    Article  PubMed  CAS  Google Scholar 

  • Lysakowski A, Gaboyard-Niay S, Calin-Jageman I, Chatlani S, Price SD, Eatock RA (2011) Molecular microdomains in a sensory terminal, the vestibular calyx ending. J Neurosci 31:10101–10114

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • McGuirt JP, Schulte BA (1994) Distribution of immunoreactive alpha- and beta-subunit isoforms of Na,K-ATPase in the gerbil inner ear. J Histochem Cytochem 42:843–853

    Article  PubMed  CAS  Google Scholar 

  • McLean WJ, Smith KA, Glowatzki E, Pyott SJ (2009) Distribution of the Na,K-ATPase alpha subunit in the rat spiral ganglion and organ of corti. J Assoc Res Otolaryngol 10:37–49

    Article  PubMed  PubMed Central  Google Scholar 

  • Meza G, Acuna D, Gutierrez A, Merchan JM, Rueda J (1996) Development of vestibular function: biochemical, morphological and electronystagmographical assessment in the rat. Int J Dev Neurosci 14:507–513

    Article  PubMed  CAS  Google Scholar 

  • Perry B, Jensen-Smith HC, Luduena RF, Hallworth R (2003) Selective expression of beta tubulin isotypes in gerbil vestibular sensory epithelia and neurons. J Assoc Res Otolaryngol 4:329–338

    Article  PubMed  PubMed Central  Google Scholar 

  • Pressley TA (1992) Phylogenetic conservation of isoform-specific regions within alpha-subunit of Na(+)-K(+)-ATPase. Am J Physiol 262:C743–751

    PubMed  CAS  Google Scholar 

  • Rocha-Sanchez SM, Morris KA, Kachar B, Nichols D, Fritzsch B, Beisel KW (2007) Developmental expression of Kcnq4 in vestibular neurons and neurosensory epithelia. Brain Res 1139:117–125

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rose EM, Koo JC, Antflick JE, Ahmed SM, Angers S, Hampson DR (2009) Glutamate transporter coupling to Na,K-ATPase. J Neurosci 29:8143–8155

    Article  PubMed  CAS  Google Scholar 

  • Rüsch A, Lysakowski A, Eatock RA (1998) Postnatal development of type I and type II hair cells in the mouse utricle: acquisition of voltage-gated conductances and differentiated morphology. J Neurosci 18:7487–7501

    PubMed  Google Scholar 

  • Scarfone E, Dememes D, Jahn R, De Camilli P, Sans A (1988) Secretory function of the vestibular nerve calyx suggested by presence of vesicles, synapsin I, and synaptophysin. J Neurosci 8:4640–4645

    PubMed  CAS  Google Scholar 

  • Schulte BA, Steel KP (1994) Expression of alpha and beta subunit isoforms of Na,K-ATPase in the mouse inner ear and changes with mutations at the Wv or Sld loci. Hear Res 78:65–76

    Article  PubMed  CAS  Google Scholar 

  • Sheean RK, Lau CL, Shin YS, O’Shea RD, Beart PM (2013) Links between l-glutamate transporters, Na(+)/K(+)-ATPase and cytoskeleton in astrocytes: evidence following inhibition with Rottlerin. Neuroscience 254:335–346

    Article  PubMed  CAS  Google Scholar 

  • Songer JE, Eatock RA (2013) Tuning and timing in mammalian type I hair cells and calyceal synapses. J Neurosci 33:3706–3724

    Article  PubMed  CAS  Google Scholar 

  • Spicer SS, Schulte BA, Adams JC (1990) Immunolocalization of Na+, K(+)-ATPase and carbonic anhydrase in the gerbil’s vestibular system. Hear Res 43:205–217

    Article  PubMed  CAS  Google Scholar 

  • Spitzmaul G, Tolosa L, Winkelman BH, Heidenreich M, Frens MA, Chabbert C, de Zeeuw CI, Jentsch TJ (2013) Vestibular role of KCNQ4 and KCNQ5 K+ channels revealed by mouse models. J Biol Chem 288:9334–9344

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • ten Cate WJ, Curtis LM, Rarey KE (1994) Na,K-ATPase alpha and beta subunit isoform distribution in the rat cochlear and vestibular tissues. Hear Res 75:151–160

    Article  PubMed  CAS  Google Scholar 

  • Wangemann P (2002) K+ cycling and the endocochlear potential. Hear Res 165:1–9

    Article  PubMed  CAS  Google Scholar 

  • Zerangue N, Kavanaugh MP (1996) Flux coupling in a neuronal glutamate transporter. Nature 383:634–637

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Hou Q, Wang M, Lin A, Jarzylo L, Navis A, Raissi A, Liu F, Man HY (2009) Na,K-ATPase activity regulates AMPA receptor turnover through proteasome-mediated proteolysis. J Neurosci 29:4498–4511

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Dr. Dwayne Simmons for the original suggestion to compare profile and cross-sectional views of the vestibular sensory epithelia. We gratefully acknowledge funds from UNC Wilmington to O. S. and S. J. P. and from NIDCD R01 DC0002290 and DC0012347 to R. A. E.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonja J. Pyott.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schuth, O., McLean, W.J., Eatock, R.A. et al. Distribution of Na,K-ATPase α Subunits in Rat Vestibular Sensory Epithelia. JARO 15, 739–754 (2014). https://doi.org/10.1007/s10162-014-0479-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-014-0479-3

Keywords

Navigation