Skip to main content

Advertisement

Log in

Mechanisms of Tympanic Membrane and Incus Mobility Loss in Acute Otitis Media Model of Guinea Pig

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Acute otitis media (AOM) is a rapid infection of middle ear due to bacterial or viral invasion. The infection commonly leads to negative pressure and purulent effusion in the middle ear. To identify how these changes affect tympanic membrane (TM) mobility or sound transmission through the middle ear, we hypothesize that pressure, effusion, and structural changes of the middle ear are the main mechanisms of conductive hearing loss in AOM. To test the hypothesis, a guinea pig AOM model was created by injection of Streptococcus pneumoniae. Three days post inoculation, vibration of the TM at umbo in response to input sound in the ear canal was measured at three experimental stages: intact, pressure-released, and effusion-drained AOM ears. The vibration of the incus tip was also measured after the effusion was removed. Results demonstrate that displacement of the TM increased mainly at low frequencies when pressure was released. As the effusion was removed, the TM mobility increased further but did not reach the level of the normal ear at low frequencies. This was caused by middle ear structural changes or adhesions on ossicles in AOM. The structural changes also affected movement of the incus at low and high frequencies. The results provide new evidence for understanding the mechanism of conductive hearing loss in AOM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  • Bluestone CD, Klein JO (1983a) Otitis media with effusion, atelectasis, and eustachian tube dysfuncion. In: Bluestone CD, Stool SE (eds) Pediatric otolaryngology. W.B. Saunders, PA, pp 419–432

    Google Scholar 

  • Bluestone CD, Klein JO (1983b) Intratemporal complications and sequelae of otitis media. In: Bluestone CD, Stool SE (eds) Pediatric otolaryngology. W. B. Saunders Company, Philadelphia, pp 513–515

    Google Scholar 

  • Carrie S, Hutton DA, Birchall JP, Green GG, Pearson JP (1992) Otitis media with effusion: components which contribute to the viscous properties. Acta Otolaryngol 112(3):504–511

    Article  PubMed  CAS  Google Scholar 

  • Caye-Thomasen P, Tos M (2000) Polyp and fibrous adhesion formation in acute otitis media caused by non-typeable or type b Haemophilus influenzae or Moraxella catarrhalis. Acta Otolaryngol 120(7):810–814

    Article  PubMed  CAS  Google Scholar 

  • Caye-Thomasen P, Hermansson A, Tos M, Prellner K (1996) Pathogenesis of middle ear adhesions. Laryngoscope 106(4):463–469

    Article  PubMed  CAS  Google Scholar 

  • Chien W, Ravicz ME, Merchant SN, Rosowski JJ (2006) The effect of methodological differences in the measurement of stapes motion in live and cadaver ears. Audiol Neurootol 11(3):183–197

    Article  PubMed  Google Scholar 

  • Dai C, Gan RZ (2008) Change of middle ear transfer function in otitis media with effusion model of guinea pigs. Hear Res 243(1–2):78–86

    Article  PubMed  Google Scholar 

  • Dai C, Wood MW, Gan RZ (2007) Tympanometry and laser Doppler interferometry measurements on otitis media with effusion model in human temporal bones. Otol Neurotol 28(4):551–558

    Article  PubMed  Google Scholar 

  • Dai C, Wood MW, Gan RZ (2008) Combined effect of fluid and pressure on middle ear function. Hear Res 236(1–2):22–32

    Article  PubMed  Google Scholar 

  • Dai C, Li W, Gan RZ (2009) Change of cochlear mechanics in acute otitis media and otitis media with effusion. Association for Research in Otolaryngology (ARO) - Midwinter Meeting, Vol. 32: 984, Baltimore, MD, February 14-19, 2009

  • Decraemer W, Khanna S, Funnell W (1999) Measurement and modeling of the three-dimensional vibration of the stapes in cat. Symposium on recent developments in auditory mechanics, Sendai, Japan

  • Ehrlich GD, Veeh R, Wang X, Costerton JW, Hayes JD, Hu FZ, Daigle BJ, Ehrlich MD, Post JC (2002) Mucosal biofilm formation on middle-ear mucosa in the chinchilla model of otitis media. JAMA 287(13):1710–1715

    Article  PubMed  Google Scholar 

  • Gan RZ, Dai C, Wood MW (2006) Laser interferometry measurements of middle ear fluid and pressure effects on sound transmission. J Acoust Soc Am 120(6):3799–3810

    Article  PubMed  Google Scholar 

  • Gould JM, Matz PS (2010) Otitis media. Pediatr Rev 31:102–110

    Google Scholar 

  • Guan X, Gan RZ (2011) Effect of middle ear fluid on sound transmission and auditory brainstem response in guinea pigs. Hear Res 277(1–2):96–106

    Article  PubMed  Google Scholar 

  • Guinan JJ Jr, Peake WT (1967) Middle-ear characteristics of anesthetized cats. J Acoust Soc Am 41(5):1237–1261

    Article  PubMed  Google Scholar 

  • Hartley DE, Moore DR (2003) Effects of conductive hearing loss on temporal aspects of sound transmission through the ear. Hear Res 177(1–2):53–60

    Article  PubMed  Google Scholar 

  • Hato N, Stenfelt S, Goode RL (2003) Three-dimensional stapes footplate motion in human temporal bones. Audiol Neurootol 8(3):140–152

    Article  PubMed  Google Scholar 

  • Heiland KE, Goode RL, Asai M, Huber AM (1999) A human temporal bone study of stapes footplate movement. Am J Otol 20(1):81–86

    PubMed  CAS  Google Scholar 

  • Hoa M, Syamal M, Sachdeva L, Berk R, Coticchia J (2009) Demonstration of nasopharyngeal and middle ear mucosal biofilms in an animal model of acute otitis media. Ann Otol Rhinol Laryngol 118(4):292–298

    PubMed  Google Scholar 

  • Hoberman A, Paradise JL, Rockette HE, Shaikh N, Wald ER, Kearney DH, Colborn DK, Kurs-Lasky M, Bhatnagar S, Haralam MA, Zoffel LM, Jenkins C, Pope MA, Balentine TL, Barbadora KA (2011) Treatment of acute otitis media in children under 2 years of age. N Engl J Med 364(2):105–115

    Article  PubMed  CAS  Google Scholar 

  • Huber AM, Sequeira D, Breuninger C, Eiber A (2008) The effects of complex stapes motion on the response of the cochlea. Otol Neurotol 29(8):1187–1192

    Article  PubMed  Google Scholar 

  • Jeselsohn Y, Freeman S, Segal N, Sohmer H (2005) Quantitative experimental assessment of the factors contributing to hearing loss in serous otitis media. Otol Neurotol 26(5):1011–1015

    Article  PubMed  Google Scholar 

  • Kitaoka K, Kaieda S, Takahashi H, Yoshida H, Takasaki K, Kumagami H (2009) Oxygen consumption by bacteria: a possible cause of negative middle ear pressure in ears with otitis media. Acta Otolaryngol Suppl 562:63–66

    Article  PubMed  Google Scholar 

  • Larsson C, Dirckx JJ, Decraemer WF, Bagger-Sjoback D, von Unge M (2003) Pars flaccida displacement pattern in purulent otitis media in the gerbil. Otol Neurotol 24(3):358–364

    Article  PubMed  Google Scholar 

  • Lee CY, Rosowski JJ (2001) Effects of middle-ear static pressure on pars tensa and pars flaccida of gerbil ears. Hear Res 153(1–2):146–163

    Article  PubMed  CAS  Google Scholar 

  • MacArthur CJ, Hefeneider SH, Kempton JB, Parrish SK, McCoy SL, Trune DR (2006) Evaluation of the mouse model for acute otitis media. Hear Res 219(1–2):12–23

    Article  PubMed  Google Scholar 

  • Majima Y, Hamaguchi Y, Hirata K, Takeuchi K, Morishita A, Sakakura Y (1988) Hearing impairment in relation to viscoelasticity of middle ear effusions in children. Ann Otol Rhinol Laryngol 97(3 Pt 1):272–274

    PubMed  CAS  Google Scholar 

  • Manley GA, Johnstone BM (1974) Middle-ear function in the guinea pig. J Acoust Soc Am 56(2):571–576

    Google Scholar 

  • Marsh RR, Baranak CC, Potsic WP (1985) Hearing loss and visco-elasticity of middle ear fluid. Int J Pediatr Otorhinolaryngol 9(2):115–120

    Article  PubMed  CAS  Google Scholar 

  • Murakami S, Gyo K, Goode RL (1997) Effect of middle ear pressure change on middle ear mechanics. Acta Otolaryngol 117(3):390–395

    Article  PubMed  CAS  Google Scholar 

  • Petrova P, Freeman S, Sohmer H (2006) The effects of positive and negative middle ear pressures on auditory threshold. Otol Neurotol 27(5):734–738

    Article  PubMed  Google Scholar 

  • Qin Z, Wood M, Rosowski JJ (2010) Measurement of conductive hearing loss in mice. Hear Res 263(1–2):93–103

    Article  PubMed  Google Scholar 

  • Ravicz ME, Rosowski JJ, Merchant SN (2004) Mechanisms of hearing loss resulting from middle-ear fluid. Hear Res 195(1–2):103–130

    Article  PubMed  Google Scholar 

  • Reid SD, Hong W, Dew KE, Winn DR, Pang B, Watt J, Glover DT, Hollingshead SK, Swords WE (2009) Streptococcus pneumoniae forms surface-attached communities in the middle ear of experimentally infected chinchillas. J Infect Dis 199(6):786–794

    Article  PubMed  Google Scholar 

  • Rosowski JJ, Lee CY (2002) The effect of immobilizing the gerbil's pars flaccida on the middle-ear's response to static pressure. Hear Res 174(1–2):183–195

    Article  PubMed  Google Scholar 

  • Rosowski JJ, Nakajima HH, Merchant SN (2008) Clinical utility of laser-Doppler vibrometer measurements in live normal and pathologic human ears. Ear Hear 29(1):3–19

    PubMed  Google Scholar 

  • Shaikh N, Hoberman A, Kaleida PH, Rockette HE, Kurs-Lasky M, Hoover H, Pichichero ME, Roddey OF, Harrison C, Hadley JA, Schwartz RH (2011) Otoscopic signs of otitis media. Pediatr Infect Dis J 30(10):822–826

    Article  PubMed  Google Scholar 

  • Spratley J, Hellstrom S, Eriksson PO, Pais-Clemente M (2002) Early structural tympanic membrane reactions to myringotomy: a study in an acute otitis media model. Acta Otolaryngol 122(5):479–487

    Article  PubMed  Google Scholar 

  • Turcanu D, Dalhoff E, Muller M, Zenner HP, Gummer AW (2009) Accuracy of velocity distortion product otoacoustic emissions for estimating mechanically based hearing loss. Hear Res 251(1–2):17–28

    Article  PubMed  Google Scholar 

  • von Unge M, Decraemer WF, Bagger-Sjoback D, Dirckx JJ (1993) Displacement of the gerbil tympanic membrane under static pressure variations measured with a real-time differential moire interferometer. Hear Res 70(2):229–242

    Article  Google Scholar 

  • von Unge M, Decraemer WF, Bagger-Sjoback D, Van den Berghe D (1997) Tympanic membrane changes in experimental purulent otitis media. Hear Res 106(1–2):123–136

    Article  Google Scholar 

  • Wiederhold ML, Zajtchuk JT, Vap JG, Paggi RE (1980) Hearing loss in relation to physical properties of middle ear effusions. Ann Otol Rhinol Laryngol Suppl 89(3 Pt 2):185–189

    PubMed  CAS  Google Scholar 

  • Yagi N, Fukazawa T, Kurata K, Honjo I (1986) A new microviscometer for determining the viscosity of middle ear effusion. Am J Otolaryngol 7(6):407–409

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Don Nakmali at Hough Ear Institute for his expert technical assistance. This work was supported by OCAST (HR09-033) and NIH (R01DC006632 and R01DC011585).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Z. Gan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guan, X., Gan, R.Z. Mechanisms of Tympanic Membrane and Incus Mobility Loss in Acute Otitis Media Model of Guinea Pig. JARO 14, 295–307 (2013). https://doi.org/10.1007/s10162-013-0379-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-013-0379-y

Keywords

Navigation