Skip to main content
Log in

Manganese tissue accumulation and tyrosine hydroxylase immunostaining response in the Neotropical freshwater crab, Dilocarcinus pagei, exposed to manganese

  • Original Article
  • Published:
Invertebrate Neuroscience

Abstract

Manganese (Mn) is an essential metal for the development and function of the mammalian brain; however, excess Mn accumulation may cause neurological abnormalities resembling Parkinson’s disease due to reductions in brain dopamine levels. Because dopamine also regulates many functions in crustaceans, this study examined the effects of Mn accumulation in Dilocarcinus pagei, a Neotropical freshwater crab. Following a 72-h exposure to graded concentrations of MnCl2, Mn accumulation was assessed in several tissues. Glycaemia and the tyrosine hydroxylase (TH) immunostaining response were also examined as indicators of catecholaminergic function and catecholaminergic cell integrity, respectively. Tissue Mn accumulation was variable and occurred in the following order: gills > hepatopancreas > claw muscle > haemolymph. Exposure to 2 mM Mn reduced the gill levels of calcium, copper and iron, whereas Mn at all concentrations decreased zinc levels. All Mn-exposed animals showed lower copper levels in the hepatopancreas and haemolymph. Exposure to 2.0 mM Mn increased the haemolymph calcium. Mn exposure had no effect on glycaemia, whereas exposure to low Mn concentrations reduced the TH immunostaining response. Analysis of the central nervous system revealed the greatest Mn effect in the cerebral ganglion and the least effect in the abdominal ganglia. These results suggest the operation of an adaptive mechanism for tissue accumulation that could be responsible for the lack of an association between Mn concentrations and metal accumulation. The findings also suggest that Mn, calcium, iron and zinc share a transporter in gill cells and that Mn resistance is greater in the TH-positive cells of this crustacean than in mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahearn GA, Mandal PK, Mandal A (2004) Mechanisms of heavy-metal sequestration and detoxification in crustaceans: a review. J Comp Physiol B 174:439–452

    Article  CAS  PubMed  Google Scholar 

  • Alvarez RA, Villalobos MGP, Rosete GC, Sosa LR, Aréchiga H (2005) Dopaminergic modulation of neurosecretory cells in the crayfish. Cell Mol Neurobiol 25(2):345–370

    Article  CAS  Google Scholar 

  • Angeli S, Barhydt T, Jacobs R, Killilea DW, Ligthgow GJ, Andresen JK (2014) Manganese disturbs metal and protein homeostasis in Caenorhabditis elegans. Metallomics 6:1816–1823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aschner M, Guilarte TR, Schneider JS, Zheng W (2007) Manganese: recent advances in understanding its transport and neurotoxicity. Toxicol Appl Pharmacol 221:131–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biagini G, Ferraguti F, Ponzoni S, Zoli M, Alboni L, Toffano G, Fuxe K, Agnati LF (1994) Neurochemical and behavioral studies on l-dopa toxicity in the model of manganese lesioned nigrostriatal pathway in the rat: evidence for a protective effect of the GM1 lactone siagoside. In: Fuxe K, Agnati LF, Bjelke B, Ohoson D (eds) Wenner-Gren symposium on trophic regulation of the basal ganglia: focus on dopamine neurons. Pergamon, Oxford, pp 381–407

    Chapter  Google Scholar 

  • Calvo AC, Pey AL, Miranda-Vizuete A, Døskeland AP, Martinez A (2011) Divergence in enzyme regulation between Caenorhabditis elegans and human tyrosine hydroxylase, the key enzyme in the synthesis of dopamine. Biochem J 434:133–141

    Article  CAS  PubMed  Google Scholar 

  • Cellier M, Prive G, Belouchi A, Kwan T, Rodrigues V, Chia W, Gros P (1995) Nramp defines a family of membrane protein. Proc Natl Acad Sci USA 92:10089–10093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen P, Parmalee N, Aschner M (2014) Genetic factors and manganese-induced neurotoxicity. Front Genet 5:265. doi:10.3389/fgene.2014.00265

    PubMed  PubMed Central  Google Scholar 

  • Chu NS, Hochberg FH, Caine DB, Olanow CW (1995) Neurotoxicity of manganese. In: Chang L, Dyyer R (eds) Handbook of neurotoxicology. New York, Marcel Dekker, pp 91–103

    Google Scholar 

  • Corrêa JD Jr, da Silva MR, da Silva ACB, de Lima SM, Malm O, Allodi S (2005) Tissue distribution, subcellular localization and endocrine disruption patterns induced by Cr and Mn in the crab Ucides cordatus. Aquat Toxicol 72:139–154

    Article  Google Scholar 

  • Cotzias GC (1958) Manganese in health and disease. Physiol Rev 38:503–532

    CAS  PubMed  Google Scholar 

  • Culotta C, Yang M, Hall MD (2005) Manganese transport and trafficking: lessons learned from Saccharomyces cerevisiae. Eukaryot Cell 4(7):1159–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donaldson J (1987) The physiopathologic significance of manganese in brain: its relation to schizophrenia and neurodegenerative disorders. Neurotoxicology 8:451–462

    CAS  PubMed  Google Scholar 

  • Dunkley PR, Bobrovskaya L, Graham ME, von Nagy-Felsobuki EL, Dickson PW (2004) Tyrosine hydroxylase phosphorylation: regulation and consequences. J Neurochem 91:1025–1043

    Article  CAS  PubMed  Google Scholar 

  • Fanjul-Moles ML (2006) Biochemical and functional aspects of crustacean hyperglycemic hormone in decapod crustaceans: review and update. Comp Biochem Physiol C 142:390–400

    Google Scholar 

  • Fingerman M, Kulkarni GK (1993) Quantitative measurement by reverse phase high performance liquid chromatography of norepinephrine in the central nervous system of the red swamp crayfish, Procambarus clarkii, and physiologically and pharmacologically induced alterations. Comp Biochem Physiol C 104:117–123

    Article  Google Scholar 

  • Garrick MD, Singleton ST, Vargas F, Kuo HC, Zhao L, Knopfel M et al (2006) DMT1: which metal does it transport? Biol Res 39:79–85

    Article  CAS  PubMed  Google Scholar 

  • Goldstein M, Lieberman A (1992) The role of the regulatory enzymes of catecholamine synthesis in Parkinson’s disease. Neurology 42:8–12

    CAS  PubMed  Google Scholar 

  • Gorell JM, Johnson CC, Rybick BA, Peterson EL, Richardson RJ (1998) The risk of Parkinson’s disease with exposure to pesticides, farming, well water and rural living. Neurology 50:1346–1350

    Article  CAS  PubMed  Google Scholar 

  • Granado e Sá M, Baptista BB, Farah LS, Leite VP, Zanotto FP (2010) Calcium sport and homeostasis in gills cells of a freshwater crab Dilocarcinus pagei. J Comp Physiol 180(3):313–321

    Article  Google Scholar 

  • Krang AS, Rosenqvist G (2006) Effects of manganese on chemically induced food search behaviour of the Norway lobster, Nephros norvegicus (L.). Aquat Toxicol 78:284–291

    Article  CAS  PubMed  Google Scholar 

  • Kumar MVS, Desiraju T (1992) Effects of chronic manganese exposure on rat brain regional biogenic amines and GABA/glutamate system. Biog Amines 8:79–83

    Google Scholar 

  • Lorenzon S, Edomi P, Giulianini PG, Mettulio R, Ferrero EA (2004) Variation of crustacean hyperglycemic hormone (CHH) level in the eyestalk and haemolymph of the shrimp Palaemon elegans following stress. J Exp Biol 207:4205–4213

    Article  CAS  PubMed  Google Scholar 

  • Lüschen W, Willing A, Jaros PP (1993) The role of biogenic amines in the control of blood glucose levels in the decapod crustaceans, Carcinus maenas. Comp Biochem Physiol C 105:291–296

    Article  Google Scholar 

  • Martin K, Huggins T, King C, Carroll A, Catapane EJ (2008) The neurotoxic effects of manganese on the dopaminergic innervation of the gill of the bivalve mollusk, Crassotrea virginica. Comp Biochem Physiol C 148:152–159

    Google Scholar 

  • Matsumoto K (1954) Neurosecretion in the thoracic ganglion of the crab, Eriocheir japonicus. Biol Bull 106:60–68

    Article  Google Scholar 

  • Maynard DM (1961) Thoracic neurosecretory structures in Brachyura. II. Secretory neurons. Gen Comp Endocrinol 1:237–263

    Article  CAS  PubMed  Google Scholar 

  • Meco G, Bonifati V, Vanacore N, Fabrizio E (1994) Parkinsonism after chronic exposure to the fungicide maneb (manganese ethylene-bis-dithiocarbamate). Scand J Work Environ Health 20:301–305

    Article  CAS  PubMed  Google Scholar 

  • Oweson C, Skold H, Pinsino A, Matranga V, Hernroth B (2008) Manganese effects on haematopoietic cells and circulating coelomocytes of Asterias rubens (Linnaeus). Aquat Toxicol 89:75–81

    Article  CAS  PubMed  Google Scholar 

  • Parenti M, Flauto C, Parati E, Vescovi A, Groppetti A (1986) Manganese neurotoxicity effects on l-dopa and pargyline treatments. Brain Res 367:8–13

    Article  CAS  PubMed  Google Scholar 

  • Ponzoni S (2012) Macrophages-mediated neurotoxic effects of intra-nigral manganese administration are attenuated by minocycline. Neurosci Lett 506:136–140

    Article  CAS  PubMed  Google Scholar 

  • Ponzoni S (2014) Tyrosine hydroxylase protein expression in ventral nerve cord of Neotropical freshwater crab. Tissue Cell 46:482–489

    Article  CAS  PubMed  Google Scholar 

  • Posser T, Franco JL, Bobrovskaya L, Leal RB, Dickson PW, Dunkley PR (2009) Manganese induces sustained Ser40 phosphorylation and activation of tyrosine hydroxylase in PC 12 cells. J Neurochem 110:848–856

    Article  CAS  PubMed  Google Scholar 

  • Rainbow PS (1997) Ecophysiology of trace metal uptake in crustaceans. Estuar Coast Shelf Sci 44:169–175

    Article  CAS  Google Scholar 

  • Rodriguez EM, Medesani DA, Fingerman M (2007) Endocrine disruption in crustaceans due to pollutants: a review. Comp Biochem Physiol A 147:661–671

    Article  Google Scholar 

  • Sanders MJ, Du Preez HH, Van Vuren HJ (1998) The freshwater river crab, Potamonautes warreni, as a bioaccumulative indicator of iron and manganese in two aquatic systems. Ecotoxicol Environ Saf 41:203–214

    Article  CAS  PubMed  Google Scholar 

  • Sarojini R, Nagabhushanam R, Fingerman M (1995) Dopaminergic and enkephalinergic involvement in the regulation of blood-glucose in the red swamp crayfish, Procambarus clarkii. Gen Comp Endocrinol 97:160–170

    Article  CAS  PubMed  Google Scholar 

  • Smith EA, Newland P, Bestwick KG, Ahmed N (2013) Increased whole blood manganese concentrations observed in children with iron deficiency anemia. J Trace Elem Med Biol 27:65–69

    Article  CAS  PubMed  Google Scholar 

  • Sura GR, Daubner SC, Fitzpatrick PF (2004) Effects of phosphorylation by protein kinase A on binding of catecholamines to the human tyrosine hydroxylase isoforms. J Neurochem 9:970–978

    Article  Google Scholar 

  • Takeda A, Sotogaku N, Oku N (2002) Manganese influences the levels of neurotransmitters in synapses in rat brain. Neuroscience 114(3):669–674

    Article  CAS  PubMed  Google Scholar 

  • Tierney AJ, Kim T, Abrams R (2003) Dopamine in crayfish and other crustaceans. Distribution in the central nervous system and physiological functions. Microsc Res Tech 60:325–335

    Article  CAS  PubMed  Google Scholar 

  • Tinikul Y, Mercier AJ, Sobhon P (2009) Distribution of dopamine and octopamine in the central nervous system and ovary during the ovarian maturation cycle in the giant freshwater prawn, Macrobrachium rosenbergii. Tissue Cell 41:430–442

    Article  CAS  PubMed  Google Scholar 

  • Viarengo A (1989) Heavy metals in marine invertebrates: mechanisms of regulation and toxicity at the cellular level. Rev Aquat Sci 1:295–317

    CAS  Google Scholar 

  • Wood DE, Derby CD (1996) Distribution of dopamine-like immunoreactivity suggests a role for dopamine in the courtship display behavior of the blue crab, Callinectes sapidus. Cell Tissue Res 285:321–330

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Kanthasamy A, Anarharam V, Kanthasamy A (2011) Effects of manganese on tyrosine hydroxylase (TH) activity and TH-phosphorylation in a dopaminergic neural cell line. Toxicol Appl Pharmacol 254:65–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Ponzoni.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponzoni, S. Manganese tissue accumulation and tyrosine hydroxylase immunostaining response in the Neotropical freshwater crab, Dilocarcinus pagei, exposed to manganese. Invert Neurosci 17, 5 (2017). https://doi.org/10.1007/s10158-017-0198-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10158-017-0198-7

Keywords

Navigation