Skip to main content

Advertisement

Log in

Beta-2 microglobulin-based equation for estimating glomerular filtration rates in Japanese children and adolescents

  • Original Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Although the creatinine (Cr)-based equation is widely used for estimating glomerular filtration rate (GFR), this equation is not ideally suited for children with low body weight or aged <2 years. Therefore, we established a new equation using serum beta-2 microglobulin (β2MG) levels for Japanese children with chronic kidney disease (CKD).

Methods

Inulin clearance and standardized serum β2MG and Cr levels were measured in 137 CKD patients aged 1 month–18 years. Using the previously established normal β2MG levels, Cr reference values, and Cr-based equation of estimated GFR (eGFR) in Japanese children, receiver operating characteristics (ROC) analyses were performed to compare the diagnostic accuracy between β2MG- and Cr-based estimations of GFR.

Results

Serum β2MG concentrations progressively increased as GFRs reduced. The correlation coefficients between GFR and β2MG, and between GFR and 1/β2MG were −0.74 (p < 0.001) and 0.86 (p < 0.001), respectively. The inulin clearance, as based on 1/serum β2MG expression, in pediatric CKD patients resulted in the equation: inulin GFR (mL/min/1.73 m2) = 149.0 × 1/serum β2MG (mg/L) +9.15. ROC analyses indicated that the ability of serum β2MG-based GFR <95 mL/min/1.73 m2 in children >2 years was better than the Cr-based estimated GFR (areas under the ROC curve 0.960 vs. 0.948, respectively).

Conclusion

The new β2MG-based eGFR formula is useful for clinical screening of renal function in Japanese children and adolescents, and measurement of serum β2MG and Cr levels as markers for predicting glomerular function may aid the early detection of mildly reduced GFR in this population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002;39:S1–266.

    Google Scholar 

  2. Nagai T, Uemura O, Ishikura K, Ito S, Hataya H, Gotoh Y, Fujita N, Akioka Y, Kaneko T, Honda M. Creatinine-based equations to estimate glomerular filtration rate in Japanese children aged between 2 and 11 years old with chronic kidney disease. Clin Exp Nephrol. 2013;17:877–81.

    Article  CAS  PubMed  Google Scholar 

  3. Uemura O, Nagai T, Ishikura K, Ito S, Hataya H, Gotoh Y, Fujita N, Akioka Y, Kaneko T, Honda M. Creatinine-based equations to estimate glomerular filtration rate in Japanese children and adolescents with chronic kidney disease. Clin Exp Nephrol. 2013. doi:10.1007/s10157-013-0856-y.

  4. Schwartz GJ, Haycock GB, Edelmann CM, Spitzer A. A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics. 1976;58:259–63.

    CAS  PubMed  Google Scholar 

  5. Lwong MBL, Tong TK, Mickell JJ, Chan JCM. Lack of evidence that formula derived creatinine clearance approximates glomerular filtration rate in pediatric intensive care population. Clin Nephrol. 1985;24:285–8.

    Google Scholar 

  6. Nolte S, Mueller B, Pringsheim W. Serum alpha 1-microglobulin and beta 2-microglobulin for the estimation of fetal glomerular renal function. Pediatr Nephrol. 1991;5:573–7.

    Article  CAS  PubMed  Google Scholar 

  7. Ikezumi Y, Honda M, Matsuyama T, Ishikura K, Hataya H, Yata N, Nagai T, Fujita N, Ito S, Iijima K, Kaneko T, Uemura O. Establishment of a normal reference value for serum β2 microglobulin in Japanese children: reevaluation of its clinical usefulness. Clin Exp Nephrol. 2013;17:99–105.

    Article  CAS  PubMed  Google Scholar 

  8. Brodehl J, Gellissen K. Endogenous renal transport of free amino acids in infancy and childhood. Pediatrics. 1968;42:395–404.

    CAS  PubMed  Google Scholar 

  9. Cole BR, Giangiacomo J, Ingelfinger JR, Robson AM. Measurement of renal function without urine collection. A critical evaluation of the constant-infusion technic for determination of inulin and para-aminohippurate. N Engl J Med. 1972;287:1109–14.

    Article  CAS  PubMed  Google Scholar 

  10. Schwartz GJ, Brion LP, Spitzer A. The use of plasma creatinine concentration for estimating glomerular filtration rate in infants, children, and adolescents. Pediatr Clin North Am. 1987;34:571–90.

    CAS  PubMed  Google Scholar 

  11. Schwartz GJ, Feld LG, Langford DJ. A simple estimate of glomerular filtration rate in full-term infants during the first year of life. J Pediatr. 1984;104:849–54.

    Article  CAS  PubMed  Google Scholar 

  12. Schwartz GJ, Gauthier B. A simple estimate of glomerular filtration rate in adolescent boys. J Pediatr. 1985;106:522–6.

    Article  CAS  PubMed  Google Scholar 

  13. Haycock GB, Schwartz GJ, Wisotsky DH. Geometric method for measuring body surface area: a height-weight formula validated in infants, children, and adults. J Pediatr. 1978;93:62–6.

    Article  CAS  PubMed  Google Scholar 

  14. Uemura O, Honda M, Matsuyama T, Ishikura K, Hataya H, Yata N, Nagai T, Ikezumi Y, Fujita N, Ito S, Iijima K, Kitagawa T. Age, gender, and body length effects on reference serum creatinine levels determined by an enzymatic method in Japanese children: a multicenter study. Clin Exp Nephrol. 2011;15:694–9.

    Article  CAS  PubMed  Google Scholar 

  15. Zweig MH, Campbell G. Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem. 1993;39:561–77.

    CAS  PubMed  Google Scholar 

  16. Donadio C. Serum and urinary markers of early impairment of GFR in chronic kidney disease patients: diagnostic accuracy of urinary β-trace protein. Am J Physiol Renal Physiol. 2010;299:F1407–23.

    Article  CAS  PubMed  Google Scholar 

  17. Bianchi C, Donadio C, Tramonti G, Consani C, Lorusso P, Rossi G. Reappraisal of serum beta2-microglobulin as marker of GFR. Ren Fail. 2001;23:419–29.

    Article  CAS  PubMed  Google Scholar 

  18. Trollfors B, Norrby R. Estimation of glomerular filtration rate by serum creatinine and serum beta 2-microglobulin. Nephron. 1981;28:196–9.

    Article  CAS  PubMed  Google Scholar 

  19. Ploegh HL, Orr HT, Strominger JL. Major histocompatibility antigens: the human (HLA-A, -B, -C) and murine (H-2K, H-2D) class I molecules. Cell. 1981;24:287–99.

    Article  CAS  PubMed  Google Scholar 

  20. Juraschek SP, Coresh J, Inker LA, Levey AS, Kottgen A, Foster MC, Astor BC, Eckfeldt JH, Selvin E. Comparison of serum concentrations of beta-trace protein, beta2-microglobulin, cystatin C, and creatinine in the US population. Clin J Am Soc Nephrol. 2013;8:584–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Tangri N, Inker LA, Tighiouart H, Sorensen E, Menon V, Beck G, Shlipak M, Coresh J, Levey AS, Sarnak MJ. Filtration markers may have prognostic value independent of glomerular filtration rate. J Am Soc Nephrol. 2012;23:351–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Astor BC, Shafi T, Hoogeveen RC, Matsushita K, Ballantyne CM, Inker LA, Coresh J. Novel markers of kidney function as predictors of ESRD, cardiovascular disease, and mortality in the general population. Am J Kidney Dis. 2012;59:653–62.

    Article  CAS  PubMed  Google Scholar 

  23. Filler G, Priem F, Lepage N, Sinha P, Vollmer I, Clark H, Keely E, Matzinger M, Akbari A, Althaus H, Jung K. Beta-trace protein, cystatin C, beta(2)-microglobulin, and creatinine compared for detecting impaired glomerular filtration rates in children. Clin Chem. 2002;48:729–36.

    CAS  PubMed  Google Scholar 

  24. Donadio C, Lucchesi A, Ardini M, Giordani R. Cystatin C beta 2-microglobulin, and retinol-binding protein as indicators of glomerular filtration rate: comparison with plasma creatinine. J Pharm Biomed Anal. 2001;24:835–42.

    Article  CAS  PubMed  Google Scholar 

  25. Vree TB, Guelen PJ, Jongman-Nix B, Walenkamp GH. The relationship between the renal clearance of creatinine and the apparent renal clearance of beta-2-microglobulin in patients with normal and impaired kidney function. Clin Chim Acta. 1981;114:93–9.

    Article  CAS  PubMed  Google Scholar 

  26. Shea PH, Mahler JF, Horak E. Prediction of glomerular filtration rate by serum creatinine and β2 microglobulin. Nephron. 1981;29:30–5.

    Article  CAS  PubMed  Google Scholar 

  27. Reveillard JP, Vincent C, Clot J, Sany J. β2 microglobulin and, β2 microglobulin binding proteins in inflammatory diseases. Eur J Rheumatol Inflamm. 1982;5:398–405.

    Google Scholar 

  28. Michalski JP, Daniels TE, Talal N, Grey HM. Beta2 microglobulin and lymphocytic infiltration in Sjögren’s syndrome. N Engl J Med. 1975;293:1228–31.

    Article  CAS  PubMed  Google Scholar 

  29. Bataille R, Magub M, Grenier J, Donnadio D, Sany J. Serum beta-2-microglobulin in multiple myeloma: Relation to presenting features and clinical status. Eur J Cancer Clin Oncol. 1982;18:59–66.

    Article  CAS  PubMed  Google Scholar 

  30. Maury CP, Helve T, Sjo¨blom C. Serum beta 2-microglobulin, sialic acid, and C-reactive protein in systemic lupus erythematosus. Rheumatol Int. 1982;2:145–9.

    Article  CAS  PubMed  Google Scholar 

  31. Norlund L, Fex G, Lanke J, Von Schenck H, Nilsson JE, Leksell H, Grubb A. Reference intervals for the glomerular filtration rate and cell-proliferation markers: serum cystatin C and serum beta 2-microglobulin/cystatin C-ratio. Scand J Clin Lab Invest. 1997;57:463–70.

    Article  CAS  PubMed  Google Scholar 

  32. Cassuto JP, Krebs BP, Viot G, Dujardin P, Masseyeff R. beta 2 Microglobulin, a tumour marker of lymphoproliferative disorders. Lancet. 1978;2:108–9.

    Article  CAS  PubMed  Google Scholar 

  33. Vincent C, Revillard JP. Beta-2-microglobulin and HLA-related glycoproteins in human urine and serum. Contrib Nephrol. 1981;26:66–88.

    CAS  PubMed  Google Scholar 

  34. Bökenkamp A, Domanetzki M, Zinck R, Schumann G, Byrd D, Brodehl J. Cystatin C—a new marker of glomerular filtration rate in children independent of age and height. Pediatrics. 1998;101:875–81.

    Article  PubMed  Google Scholar 

  35. Uemura O, Nagai T, Ishikura K, Ito S, Hataya H, Gotoh Y, Fujita N, Akioka Y, Kaneko T, Honda M. Cystatin C-based equation for estimating glomerular filtration rate in Japanese children and adolescents. Clin Exp Nephrol. 2013. doi:10.1007/s10157-013-0910-9.

  36. Hofstra JM, Willems JL, Wetzels JF. Estimated glomerular filtration rate in the nephrotic syndrome. Nephrol Dial Transplant. 2011;26:550–6.

    Article  PubMed  Google Scholar 

  37. Stevens LA, Schmid CH, Greene T, Li L, Beck GJ, Joffe MM, Froissart M, Kusek JW, Zhang YL, Coresh J, Levey AS. Factors other than glomerular filtration rate affect serum cystatin C levels. Kidney Int. 2009;75:652–60.

    Article  CAS  PubMed  Google Scholar 

  38. Rule AD, Bergstralh EJ, Slezak JM, Bergert J, Larson TS. Glomerular filtration rate estimated by cystatin C among different clinical presentations. Kidney Int. 2006;69:399–405.

    Article  CAS  PubMed  Google Scholar 

  39. Manetti L, Genovesi M, Pardini E, Grasso L, Lupi I, Linda Morselli L, Pellegrini G, Martino E. Early effects of methylprednisolone infusion on serum cystatin C in patients with severe Graves’ ophthalmopathy. Clin Chim Acta. 2005;356:227–8.

    Article  CAS  PubMed  Google Scholar 

  40. Manetti L, Pardini E, Genovesi M, Campomori A, Grasso L, Morselli LL, Lupi I, Pellegrini G, Bartalena L, Bogazzi F, Martino E. Thyroid function differently affects serum cystatin C and creatinine concentrations. J Endocrinol Invest. 2005;28:346–9.

    Article  CAS  PubMed  Google Scholar 

  41. Knight EL, Verhave JC, Spiegelman D, Hillege HL, de Zeeuw D, Curhan GC, de Jong PE. Factors influencing serum cystatin C levels other than renal function and the impact on renal function measurement. Kidney Int. 2004;65:1416–21.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support by the Kidney Foundation, Japan enabled us to examine blood or urine specimens collected throughout Japan. We thank Takeshi Matsuyama, MD, Midori Awazu, MD, Takashi Sekine, MD, Mayumi Sako, MD, Takuji Yamada, MD, Yuko Akioka, MD, Hirotsugu Kitayama, MD, Mayumi Sako, MD, and Masataka Hisano, MD of the Committee of Measures for Pediatric CKD, for their contributions to the improvement of this manuscript, and Kenichi Satomura, MD and Yuhei Ito, MD for their contributions to the enrollment of cases in this study.

Conflict of interest

The authors have declared that no conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yohei Ikezumi.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikezumi, Y., Uemura, O., Nagai, T. et al. Beta-2 microglobulin-based equation for estimating glomerular filtration rates in Japanese children and adolescents. Clin Exp Nephrol 19, 450–457 (2015). https://doi.org/10.1007/s10157-014-1015-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-014-1015-9

Keywords

Navigation