Skip to main content
Log in

Effects of cell-type-specific expression of a pan-caspase inhibitor on renal fibrogenesis

  • Original Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

The caspase family of enzymes is grouped into two major sub-families, namely apoptotic and inflammatory caspases, which play central roles in the induction of apoptosis, regulation of inflammation and immunity, and cellular differentiation.

Methods

The role of caspase activation in tubular epithelium and interstitial cells of 3 lines of transgenic mice with obstructed nephropathy was examined: p35 mice bearing the pan-caspase inhibitor protein expressed by the p35 gene separated from the universal CAG promoter by a floxed STOP sequence were crossed with γGT.Cre and FSP1.Cre mice that express Cre recombinase in the cortical tubular epithelium and FSP1+ interstitial cells, respectively. The γGT.Cre;p35, FSP1.Cre;p35 and p35 control mice were then challenged with unilateral ureter obstruction (UUO).

Results

Proinflammatory parameters such as protein levels of active IL-1β subunit and mRNA levels of TNF-α and NOD-like receptor pyrin domain containing-3, and profibrogenic parameters such as interstitial matrix deposition and mRNA levels of fibronectin EIIIA isoform and α1 chain of procollagen type I in the kidneys were significantly increased at 7 days in the FSP1.Cre;p35- and p35-UUO mice, but not in the γGT.Cre;p35-UUO mice. These changes paralleled the numbers of apoptotic nuclei in tubules, but not in interstitial cells, and the protein levels of active caspase-3 subunit in the kidneys of FSP1.Cre;p35-, p35- and γGT.Cre;p35-UUO mice.

Conclusion

This study provides evidence of the critical role of caspase activation in the tubular epithelium, but not in FSP1+ interstitial cells, in apoptosis and inflammasome induction, leading to proinflammatory and profibrogenic processes in fibrous kidneys with UUO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lavrik IN, Golks A, Krammer PH. Caspases: pharmacological manipulation of cell death. J Clin Invest. 2005;115:2665–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Sung JH, Zhao H, Roy M, Sapolsky RM, Steinberg GK. Viral caspase inhibitor p35, but not crmA, is neuroprotective in the ischemic penumbra following experimental stroke. Neuroscience. 2007;149:804–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Chandrashenkhar Y, Anway R, Shuros A, Anand I. Long-term caspase inhibition ameliorates apoptosis, reduces myocardial troponin-I cleavage, protects left ventricular function, and attenuates remodeling in rats with myocardial infarction. J Am Coll Cardiol. 2004;43:295–301.

    Article  Google Scholar 

  4. Daemen MARC, van’t Veer C, Denecker G, Heemskerk VH, Wolfs TGAM, Clauss M, et al. Inhibition of apoptosis induced by ischemia-reperfusion prevents inflammation. J Clin Invest. 1999;104:541–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Sanz AB, Santamaria B, Ruiz-Ortega M, Egido J, Ortiz A. Mechanisms of renal apoptosis in health and disease. J Am Soc Nephrol. 2008;19:1634–42.

    Article  CAS  PubMed  Google Scholar 

  6. Bryant C, Fitzgerald KA. Molecular mechanisms involved in inflammasome activation. Trends Cell Biol. 2009;19:455–64.

    Article  CAS  PubMed  Google Scholar 

  7. Docherty NG, O’Sullivan OE, Healy DA, Fitzpatrick JM, Watson RWG. Evidence that inhibition of tubular cell apoptosis protects against renal damage and development of fibrosis following ureteric obstruction. Am J Physiol Renal Physiol. 2006;290:F4–13.

    Article  CAS  PubMed  Google Scholar 

  8. Tao Y, Kim J, Faubel S, Wu JC, Falk SA, Schrier RW, et al. Caspase inhibition reduces tubular apoptosis and proliferation and slows disease progression in polycystic kidney disease. PNAS. 2005;102:6954–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Seery JP, Cattell V, Watt FM. Cutting edge: amelioration of kidney disease in a transgenic mouse model of lupus nephritis by administration of the caspase inhibitor carbobenzoxy-valyl-ananyl-aspartyl-(beta-o-methyl)-fluoromethylketone. J Immunol. 2001;167:2452–5.

    Article  CAS  PubMed  Google Scholar 

  10. Yang B, Johnson TS, Haylor JL, Wagner B, Watson PF, El Kossi MMH, et al. Effects of caspase inhibition on the progression of experimental glomerulonephritis. Kidney Int. 2003;63:2050–64.

    Article  CAS  PubMed  Google Scholar 

  11. Inoue T, Suzuki H, Okada H. Targeted expression of a pan-caspase inhibitor in tubular epithelium attenuates interstitial inflammation and fibrogenesis in nephritic but not nephrotic mice. Kidney Int. 2012;82:980–9.

    Article  CAS  PubMed  Google Scholar 

  12. Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest. 2002;110:341–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Inoue T, Takenaka T, Hayashi M, Monkawa T, Yoshino J, Shimoda K, et al. Fibroblast expression of an IkB dominant-negative transgene attenuates renal fibrosis. J Am Soc Nephrol. 2010;21:2047–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Okada H, Inoue T, Kikuta T, Watanabe T, Kanno Y, Ban S, et al. A possible anti-inflammatory role of angiotensin II type 2 receptor in immune-mediated glomerulonephritis during type 1 receptor blockade. Am J Pathol. 2006;169:1577–89.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Strutz F, Okada H, Lo CW, Danoff TM, Carone RL, Tomaszewski JE, et al. Identification and characterization of a fibroblast marker: fSP1. J Cell Biol. 1995;130:393–405.

    Article  CAS  PubMed  Google Scholar 

  16. Okada H, Inoue T, Kikuta T, Kato N, Kanno Y, Hirosawa N, et al. Poly(ADP-ribose) polymerase-1 (PARP-1) and PARP-1 binding element enhance murine CCN2 gene transcription in renal tubular epithelial cells. J Am Soc Nephrol. 2008;19:933–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Savill J. Regulation of glomerular cell number by apoptosis. Kidney Int. 1999;56:1216–22.

    Article  CAS  PubMed  Google Scholar 

  18. Yang B, Johnson TS, Thomas GL, Watson PF, Wagner B, El Nahas AM. Apoptosis and caspase-3 in experimental anti-glomerular basement membrane nephritis. J Am Soc Nephrol. 2001;12:485–95.

    CAS  PubMed  Google Scholar 

  19. Misseri R, Meldrum DR, Dinarello CA, Dagher P, Hile KL, Rink RC, et al. TNF-a mediates obstruction-induced renal tubular cell apoptosis and proapoptotic signaling. Am J Physiol Renal Physiol. 2005;288:F406–11.

    Article  CAS  PubMed  Google Scholar 

  20. Meldrum KK, Misseri R, Metcalfe P, Dinarello CA, Hille KL, Meldrum DR. TNF-a neutralization ameliorates obstruction-induced renal fibrosis and dysfunction. Am J Physiol Integr Comp Physiol. 2007;292:R1456–64.

    Article  CAS  Google Scholar 

  21. Zarjou A, Yang S, Abraham E, Agarwal A, Liu G. Identification of a microRNA signature in renal fibrosis: role of miR-21. Am J Physiol Renal Physiol. 2011;301:F793–801.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Sanz AB, Justo P, Sanchez-Nino MD, Blanco-Colio LM, Winkles JA, Kreztler M, et al. The cytokine TWEAK modulates renal tubulointerstitial inflammation. J Am Soc Nephrol. 2008;19:695–703.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Jin Y, Ratnam K, Chuang PY, Fan Y, Zhong Y, Dai Y, et al. A systems approach identifies HIPK2 as a key regulator of kidney fibrosis. Nat Med. 2012;18:580–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Jones LK, O’Sullivan KM, Semple T, Kuligowski MP, Fukami K, Ma FY, et al. IL-1RI deficiency ameliorates early experimental renal interstitial fibrosis. Nephrol Dial Transpl. 2009;24:3024–32.

    Article  CAS  Google Scholar 

  25. Vilaysane A, Chun J, Seamone ME, Wnag W, Chin R, Hirota S, et al. The NLRP3 inflammasome promotes renal inflammation and contributes to CKD. J Am Soc Nephrol. 2010;21:1732–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Chowdhury P, Sacks SH, Sheerin NS. Endogenous ligands for TLR2 and TLR4 are not involved in renal injury following ureteric obstruction. Nephrol Exp Nephrol. 2010;115:e122–30.

    Article  CAS  Google Scholar 

  27. Campbell MT, Hile KL, Zhang H, Asanuma H, Vanderbrink BA, Rink RR, et al. Toll-like receptor 4: a novel signaling pathway during renal fibrogenesis. J Surg Res. 2011;168:e61–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Bani-Hani AH, Leslie JA, Asanuma H, Dinarello CA, Campbell MT, Meldrum DR, et al. IL-18 neutralization ameliorates obstruction-induced epithelial-mesenchymal transition and renal fibrosis. Kidney Int. 2009;76:500–11.

    Article  CAS  PubMed  Google Scholar 

  29. Watanabe A, Sohail MA, Gomes DA, Hashmi A, Nagata J, Sutterwala FS, et al. Inflammasome-mediated regulation of hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol. 2009;296:G1248–57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Artlett CM, Sassi-Gaha S, Rieger JL, Boesteanu AC, Feghali-Bostwick CA, Katsikis PD. The inflammasome activating caspase 1 mediates fibrosis and myofibroblast differentiation in systemic sclerosis. Arthritis Rheumatol. 2011;63:3563–74.

    Article  CAS  Google Scholar 

  31. Shigeoka AA, Mueller JL, Kambo A, Mathison JC, King AJ, Hall WF, et al. An inflammasome-independent role for epithelial-expressed Nlrp3 in renal ischemia-reperfusion injury. J Immunol. 2010;185:6277–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Wang W, Wang X, Chun J, Vilaysane A, Clark S, French G, et al. Inflammasome-independent NLRP3 augments TGF-b signaling in kidney epithelium. J Immunol. 2013;190:1239–49.

    Article  CAS  PubMed  Google Scholar 

  33. Cailhier JF, Laplante P, Hebert MJ. Endothelial apoptosis and chronic transplant vasculopathy: recent results, novel mechanisms. Am J Transpl. 2006;6(2):247–53.

    Article  CAS  Google Scholar 

  34. Laplante P, Sirois I, Raymond M, Kokta V, Beliveau A, Prat A, et al. Caspase-3-mediated secretion of connective tissue growth factor by apoptotic endothelial cells promotes fibrosis. Cell Death Differ. 2010;17:291–303.

    Article  CAS  PubMed  Google Scholar 

  35. Wang L, Scabilloni JF, Antonini JM, Rojanasakul Y, Castranova V, Mercer RR. Induction of secondary apoptosis, inflammation, and lung fibrosis after intratracheal instillation of apoptotic cells in rats. Am J Physiol Lung Cell Mol Physiol. 2006;290(4):L695–702.

    Article  CAS  PubMed  Google Scholar 

  36. Mathai SK, Gulati M, Peng X, Russell TR, Shaw AC, Rubinowtiz AN, et al. Circulating monocytes from systemic sclerosis patients with interstitial lung disease show an enhanced profibrotic phenotype. Lab Invest. 2010;90:812–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Canbay A, Taimr P, Torok N, Higuchi H, Friedman S, Gores GJ. Apoptotic body engulfment by a human stellate cell line is profibrogenic. Lab Invest. 2003;83:655–63.

    Article  CAS  PubMed  Google Scholar 

  38. Kodama T, Takehara T, Hikita H, Shimizu S, Shigekawa M, Tsunematsu H, et al. Increases in p53 expression induce CTGF synthesis by mouse and human hepatocytes and result in liver fibrosis in mice. J Clin Invest. 2011;121:3343–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Ichimura T, Asseldonk EJ, Humphreys BD, Gunaratnam L, Duffield JS, Bonventre JV. Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. J Clin Invest. 2008;118:1657–68.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Inoue T, Plieth D, Venkov CD, Xu C, Neilson EG. Antibodies against macrophages that overlap in specificity with fibroblasts. Kidney Int. 2005;67:2488–93.

    Article  PubMed  Google Scholar 

  41. Oesterreicher CH, Penz-Oesterreicher M, Grivennikov SI, Guma M, Koltsova EK, Datz C, et al. Fibroblast-specific protein 1 identifies an inflammatory subpopulation of macrophages in the liver. PNAS. 2011;108:308–13.

    Article  Google Scholar 

  42. Iwano M, Fischer A, Okada H, Pleith D, Xue C, Danoff TM, et al. Conditional abatement of tissue fibrosis using nucleotide analogs to corrupt DNA replication selectively in transgenic fibroblasts. Mol Ther. 2001;3:149–59.

    Article  CAS  PubMed  Google Scholar 

  43. Linkermann A, Hackl MJ, Kunzendorf U, Walczak H, Krautwald S, Jevnikar AM. Necroptosis in immunity and ischemia-reperfusion injury. Am J Transpl. 2013;13:2797–804.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank M. Fukuoka and T. Iso for their technical assistance. This research was supported in part by research grants from the Japanese Ministry of Education, Culture, Sports, Science and Technology, and Asubio Pharma Co. Ltd.

Conflict of interest

All of the authors declared no conflicts of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirokazu Okada.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inoue, T., Kusano, T., Tomori, K. et al. Effects of cell-type-specific expression of a pan-caspase inhibitor on renal fibrogenesis. Clin Exp Nephrol 19, 350–358 (2015). https://doi.org/10.1007/s10157-014-1011-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-014-1011-0

Keywords

Navigation