Skip to main content
Log in

N-acethyl-cysteine reduces the occurrence of contrast-induced acute kidney injury in patients with renal dysfunction: a single-center randomized controlled trial

  • Original Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

The occurrence of contrast-induced acute kidney injury (CIAKI) has paralleled the increased number of diagnostic interventions requiring radiographic contrast media (CM). Several strategies aimed at preventing renal injury following iodine have been carried out over the last several years. The aim of this study was to evaluate the impact of three different strategies aimed at preventing CIAKI in patients with renal dysfunction (serum creatinine >1.25 mg/dl or estimated creatinine clearance <45 ml/min) receiving low osmolar CM for diagnostic–therapeutic procedures.

Methods

Candidates received 154 mmol NaHCO3 solution (B0) at a rate of 3 ml/kg/h from at least 2 h before the procedure and at 1 ml/kg/h during and for the next 6–12 h; the same schedule plus N-acethyl-cysteine (NAC) 600 mg twice daily the day before and the day of the procedure (BN) or NAC as above plus 154 mmol NaCl solution at a rate of 3 ml/kg/h from at least 2 h before the procedure and at 1 ml/kg/h during and for the next 6–12 h (SN). Serum creatinine (SCr) was measured at baseline and on days 2 or occasionally 3 after CM. The main outcome measure was the occurrence of CIAKI, defined as a ≥25 % increase in SCr within 2–3 days of CM.

Results

The three groups were similar with regard to age, gender distribution, weight, baseline serum levels of creatinine, sodium, potassium, urate and estimated creatinine clearance. A larger proportion of individuals received ACEIs/ARAs in the BN group (p < 0.05), but in the SN group, more patients declared a past history of acute myocardial infarction or had high blood pressure, and few displayed mild–moderate left ventricular dysfunction (p < 0.05). CIAKI occurred in 24/123 (19.5 %) assessable patients (15/42 in the B0 group, 3/43 in the BN group and 6/38 in the SN group; p < 0.01). Thus, 15/42 patients who did not receive NAC developed CIAKI in contrast to 9/81 who did (p < 0.01). Multivariate logistic regression models showed that the use of NAC was the unique factor associated with a statistically significant influence for the occurrence of CIAKI (OR: 0.18; 95 % CI: 0.04–0.72; p = 0.016).

Conclusions

The results from this study show that: (1) the occurrence of CIAKI after low-osmolar CM administration is similar to that reported worldwide. (2) NAC-based renoprotective measures are superior for the prevention of CIAKI in patients with previous renal dysfunction. (3) They also demonstrate that bicarbonate expansion alone has limited value in preventing CIAKI. For those individuals at risk, combination prophylaxis including volume expansion plus NAC should be recommended to reduce the chance of overt kidney injury following CM administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Briguori C, Tavano D, Colombo A. Contrast agent-associated nephrotoxicity. Prog Cardiovasc Dis. 2003;45:493–503.

    Article  PubMed  Google Scholar 

  2. McCullough PA, Wolyn R, Rocher LL, Levin RN, O′Neill WW. Acute renal failure after coronary intervention: incidence, risk factors, and relationship to mortality. Am J Med. 1997;103:368–75.

    Article  PubMed  CAS  Google Scholar 

  3. Castini D, Lucreziotti S, Bosotti L, et al. Prevention of contrast-induced nephropathy: a single center randomized study. Clin Cardiol. 2010;33(3):63–8.

    Article  Google Scholar 

  4. Wong GTC, Irwin MG. Contrast-induced nephropathy. Br J Anaesth. 2007;99(4):474–83.

    Article  PubMed  CAS  Google Scholar 

  5. Goldenberg I, Matetzky S. Nephropathy induced by contrast media: pathogenesis, risk factors and preventive strategies. CMAJ. 2005;172(11):1461–71.

    PubMed  Google Scholar 

  6. Parfrey PS, Griffiths SM, Barrett BJ, et al. Contrast material-induced renal failure in patients with diabetes mellitus, renal insufficiency, or both. A prospective controlled study. N Engl J Med. 1989;320:143–9.

    Article  PubMed  CAS  Google Scholar 

  7. Aspelin P, Aubry P, Fransson SG, Strasser R, Willenbrock R, Berg KJ. Nephrotoxic effects in high-risk patients undergoing angiography. N Engl J Med. 2003;348(6):491–9.

    Article  PubMed  CAS  Google Scholar 

  8. Kuhn MJ, Chen N, Sahani DV, et al. The PREDICT Study: a randomized double-blind comparison of contrast-induced nephropathy after low or isoosmolar contrast agent exposure. AJR. 2008;191:151–7.

    Article  PubMed  Google Scholar 

  9. Marenzi G, Marana I, Lauri G, et al. The prevention of radiocontrast-agent-induced nephropathy by hemofiltration. N Engl J Med. 2003;349:1333–40.

    Article  PubMed  CAS  Google Scholar 

  10. Baker CSR, Baker LRI. Prevention of contrast nephropathy after cardiac catheterization. Heart. 2001;85:361–2.

    Article  PubMed  CAS  Google Scholar 

  11. Solomon R, Werner C, Mann D, D’Elia J, Silva P. Effects of saline, mannitol, and furosemide to prevent acute decreases in renal function induced by radiocontrast agents. N Engl J Med. 1994;331(21):1416–20.

    Article  PubMed  CAS  Google Scholar 

  12. Rudnick MR, Goldfarb S, Wexler L, et al. Nephrotoxicity of ionic and nonionic contrast media in 1196 patients: a randomized trial. Kidney Int. 1995;47(1):254–61.

    Article  PubMed  CAS  Google Scholar 

  13. Stone GE, McCullough PA, W for the CONTRAST Investigators. Fenoldopam mesylate for the prevention of contrast-induced nephropathy: a randomized controlled trial. JAMA. 2003;290(17):2284–91.

    Article  PubMed  CAS  Google Scholar 

  14. Bakris GL, Lass NA, Glock D. Renal hemodynamics in radiocontrast medium-induced renal dysfunction: a role for dopamine-1 receptors. Kidney Int. 1999;56:206–10.

    Article  PubMed  CAS  Google Scholar 

  15. Bakris G, Burnett J. A role for calcium in radiocontrast induced reductions in renal hemodynamics. Kidney Int. 1985;27(2):465–8.

    Article  PubMed  CAS  Google Scholar 

  16. Kapoor A, Kumar S, Gulati S, Gambhir S, Sethi R, Sinha N. The role of theophylline in contrast-induced nephropathy: a case–control study. Nephrol Dial Transpl. 2002;17(11):1936–41.

    Article  CAS  Google Scholar 

  17. Huber W, Ilgmann K, Page M, et al. Effect of theophylline on contrast material–induced nephropathy in patients with chronic renal insufficiency: controlled randomized, double-blinded study. Radiology. 2002;223:772–9.

    Article  PubMed  CAS  Google Scholar 

  18. Safirstein R, Andrade L, Vieira JM. N-acetylcysteine and nephrotoxic effects of RC agents: a new use for an old drug. N Engl J Med. 2000;343:210–2.

    Article  PubMed  CAS  Google Scholar 

  19. Teruel JL, Maracen R, Herrero JA, Ortuno FJ. An easy and effective procedure to prevent radiocontrast nephrotoxicity in high-risk patients [letter]. Nephron. 1989;51(2):282.

    Article  PubMed  CAS  Google Scholar 

  20. Kelly AM, Dwamena B, Cronin P, Bernstein SJ, Carlos RC. Meta-analysis: effectiveness of drugs for preventing contrast-induced nephropathy. Ann Int Med. 2008;148:284–94.

    Article  PubMed  Google Scholar 

  21. Heyman SN, Rosen S, Brezis M. Radiocontrast nephropathy: a paradigm for the synergism between toxic and hypoxic insults in the kidney. Exp Nephrol. 1994;2:153–7.

    PubMed  CAS  Google Scholar 

  22. Heyman SN, Brezis M, Epstein FH, Spokes K, Silva P, Rosen S. Early renal medullary hypoxic injury from radiocontrast and indomethacin. Kidney Int. 1991;40:632–42.

    Article  PubMed  CAS  Google Scholar 

  23. Heyman SN, Brezis M, Reubinoff CA, et al. Acute renal failure with selective medullary injury in the rat. J Clin Invest. 1988;82:401–12.

    Article  PubMed  CAS  Google Scholar 

  24. Brezis M, Rosen S. Hypoxia of the renal medulla—its implications for disease. N Engl J Med. 1995;332(10):647–55.

    Article  PubMed  CAS  Google Scholar 

  25. Rudnick MR, Berns JS, Cohen RM, Goldfarb S. Contrast media-associated nephrotoxicity. Semin Nephrol. 1997;17(1):15–26.

    PubMed  CAS  Google Scholar 

  26. Pflueger A, Larson TS, Nath KA, King BF, Gross JM, Knox FG. Role of adenosine in contrast media-induced acute renal failure in diabetes mellitus. Mayo Clin Proc. 2000;75:1275–83.

    Article  PubMed  CAS  Google Scholar 

  27. Bakris GL, Lass N, Gaber AO, Jones J, Burnett J Jr. Radiocontrast medium-induced declines in renal function: a role for oxygen free radicals. Am J Physiol. 1990;258:F115–20.

    PubMed  CAS  Google Scholar 

  28. Bakris GL, Gabaer AO, Jones JD. Oxygen free radical involvement in urinary Tamm-Horsfall protein excretion after intrarenal injection of contrast medium. Radiology. 1990;175:57–60.

    PubMed  CAS  Google Scholar 

  29. Katholi R, Woods T Jr, Taylor G, et al. Oxygen free radicals and contrast nephropathy. Am J Kidney Dis. 1998;32(1):64–71.

    Article  PubMed  CAS  Google Scholar 

  30. Lee HC, Sheu SH, Yen HW, Lai WT, Chang JG. JNK/ATF2 pathway is involved in iodinated contrast media-induced apoptosis. Am J Nephrol. 2010;31:125–33.

    Article  PubMed  CAS  Google Scholar 

  31. Tepel M, Van der Giet M, Schwarzfeld C, Laufer U, Liermann D, Zidek W. Prevention of radiographic-contrast-agent-induced reductions in renal function by N-acetylcysteine. N Engl J Med. 2000;343(3):180–4.

    Article  PubMed  CAS  Google Scholar 

  32. Skyu KG, Cheng JJ, Kuan P. N-acetylcysteine protects against acute renal damage in patients with abnormal renal function undergoing a coronary procedure. J Am Coll Cardiol. 2002;40:1383–8.

    Article  Google Scholar 

  33. Kay J, Chow WH, Chan TM, et al. N-acetylcysteine for prevention of acute deterioration of renal function following elective coronary angiography and intervention: a randomized controlled trial. JAMA. 2003;289(5):553–8.

    Article  PubMed  CAS  Google Scholar 

  34. Baker CS, Wragg A, Kuman S, De Palma R, Baker L, Knight C. A rapid protocol for the prevention of contrast-induced renal dysfunction: the RAPPID study. J Am Coll Cardiol. 2003;41(12):2114–8.

    Article  PubMed  Google Scholar 

  35. Birck R, Krzossk S, Markowetz F, et al. Acetylcysteine for prevention of contrast nephropathy: meta-analysis. Lancet. 2003;362:598–603.

    Article  PubMed  CAS  Google Scholar 

  36. Spargias K, Alexopoulos E, Kyrzopoulos S, et al. Ascorbic acid prevents contrast-mediated nephropathy in patients with renal dysfunction undergoing coronary angiography or intervention. Circulation. 2004;110(18):2837–42.

    Article  PubMed  CAS  Google Scholar 

  37. Alpern RJ. Renal acidification mechanisms. In: Brenner BM, editor. The kidney. 6th ed. Philadelphia, PA: WB Saunders; 2000. p. 455–519.

    Google Scholar 

  38. Halliwell B, Gutteridge JMC. Role of free radicals and catalytic metal ions in human diseases: an overview. Methods Enzymol. 1990;186:1–85.

    Article  PubMed  CAS  Google Scholar 

  39. Cohen G. The Fenton reaction. In: Greenwald RA, editor. CRC handbook of methods for oxygen radical research. Boca Raton, FL: CRC Press Inc; 1985. p. 55–64.

    Google Scholar 

  40. Merten GJ, Burgess WP, Gray LV, et al. Prevention of contrast-induced nephropathy with sodium bicarbonate. A randomized controlled trial. JAMA. 2004;291(19):2328–34.

    Article  PubMed  CAS  Google Scholar 

  41. Gomes VO, Poli de Figueredo CE, Caramori P, et al. N-acethylcysteine does not prevent contrast induced nephropathy after cardiac catheterization with an ionic low osmolality contrast medium: a multicenter clinical trial. Heart. 2005;91:774–8.

    Article  PubMed  CAS  Google Scholar 

  42. Nash K, Hafeez A, Hou S. Hospital-acquired renal insufficiency. Am J Kidney Dis. 2002;39:930–6.

    Article  PubMed  Google Scholar 

  43. McCullough PA, Adam A, Becker CR, et al. Epidemiology and prognostic implications of contrast-induced nephropathy. Am J Med. 2006; 98 Suppl 6A:5K–13K.

    Google Scholar 

  44. Mehran R, Aymong ED, Nikolsky E, et al. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation. J Am Coll Cardiol. 2004;44(7):1393–9.

    PubMed  Google Scholar 

  45. Goldenberg I, Shechter M, Matetzky S, et al. Oral acethylcysteine as an adjunct to saline hydration for the prevention of contrast-induced nephropathy following coronary angiography. A randomized controlled trial and review of the current literature. Eur Heart J. 2004;25:212–8.

    Google Scholar 

  46. Maioli M, Toso A, Leoncini M, et al. Sodium bicarbonate versus saline for the prevention of contrast-induced nephropathy in patients with renal dysfunction undergoing coronary angiography or intervention. J Am Coll Cardiol. 2008;52:599–604.

    Article  PubMed  CAS  Google Scholar 

  47. Navaneethan SD, Singh S, Appasamy S, Wing RE, Sehgai AR. Sodium bicarbonate therapy for the prevention of contrast-induced nephropathy: a systematic review and meta-analysis. Am J Kidney Dis. 2009;53(4):617–27.

    Article  PubMed  CAS  Google Scholar 

  48. Liu R, Nair D, Ix J, Moore DH, Bent S. N-acethylcysteine for the prevention of contrast-induced nephropathy. A systematic review and meta-analysis. J Gen Intern Med. 2005;20:193–200.

    Article  PubMed  Google Scholar 

  49. Marenzi G, Assanelli E, Marana I. N-acethylcysteine and contrast-induced nephropathy in primary angioplasty. N Engl J Med. 2006;354:2773–82.

    Article  PubMed  CAS  Google Scholar 

  50. Calvin AD, Misra S, Pflueger A. Contrast-induced acute kidney injury and diabetic nephropathy. Nat Rev Nephrol. 2010;6(11):679–88.

    Article  PubMed  Google Scholar 

  51. ACT Investigators. Acethylcysteine for prevention of renal outcomes in patients undergoing coronary and peripheral vascular angiography. Main results from the randomized acethylcysteine for contrast-induced nephropathy trial (ACT). Circulation. 2011;124:1250–9.

    Google Scholar 

  52. Kunadian V, Zaman A, Spyridopoulos I, Qiu W. Sodium bicarbonate for the prevention of contrast induced nephropathy: a meta-analysis of published clinical trials. Eur J Radiol. 2010; doi:10.1016/j.ejrad.2009.12.015.

  53. Novikov M, Molitoris B, Campos S, et al. Renoprotective properties of acetazolamide in a rat model of contrast media induced renal failure (abstract). J Am Soc Nephrol. 2003;14:345A.

    Google Scholar 

  54. Hoste EA, De Waele JJ, Gevaert SA, Uchino S, Kellum JA. Sodium bicarbonate for prevention of contrast-induced acute kidney injury: a systematic review and meta-analysis. Nephrol Dial Transpl. 2010;25(3):747–58.

    Article  CAS  Google Scholar 

  55. Zoungas S, Nimomiya T, Huxley R, et al. Systematic review: sodium bicarbonate treatment regimens for the prevention of contrast-induced nephropathy. Ann Int Med. 2009;11(9):631–8.

    Google Scholar 

  56. From AM, Bartholmai BJ, Williams AW, Cha SS, Pfluger A, McDonald FS. Sodium bicarbonate is associated with an increased incidence of contrast nephropathy. A retrospective cohort study of 7977 patients at Mayo Clinic. Clin J Am Soc Nephrol. 2008;3(1):10–8.

    Article  PubMed  CAS  Google Scholar 

  57. Richardson DE, Regino CA, Yao H, Johnson JV. Methionineoxidation by hydrogen peroxymonocarbonate, a reactive oxygen species formed from CO2/bicarbonate and hydrogen peroxide. Free Radic Biol Med. 2003;35(12):1538–50.

    Article  PubMed  CAS  Google Scholar 

  58. Mishra J, Ma Q, Prada A, et al. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol. 2003;14(10):2534–43.

    Article  PubMed  CAS  Google Scholar 

  59. Haase M, Bellomo R, Decarajan P, Schlattmann P, Haase-Fielitz A, the NGAL Meta-Analysis Investigator Group. Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis. 2009;54(6):1012–24.

    Google Scholar 

  60. Soni S, Ronco C, Katz N, Cruz D. Early diagnosis of acute kidney injury: the promise of novel biomarkers. Blood Purify. 2009;28:165–74.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful and indebted to Claudio D. Gonzalez, MD, for the critical reading of this manuscript.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo M. Heguilén.

About this article

Cite this article

Heguilén, R.M., Liste, A.A., Payaslian, M. et al. N-acethyl-cysteine reduces the occurrence of contrast-induced acute kidney injury in patients with renal dysfunction: a single-center randomized controlled trial. Clin Exp Nephrol 17, 396–404 (2013). https://doi.org/10.1007/s10157-012-0722-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-012-0722-3

Keywords

Navigation