Skip to main content

Advertisement

Log in

Cardiorenal connection in chronic kidney disease

  • Review Article
  • The 36th IUPS Satellite Symposium: The Kidney and Hypertension
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Chronic kidney disease (CKD), as defined by reduced glomerular filtration rate (<60 ml/min/1.73 m2) and/or the presence of renal damage for >3 months, is a significant threat for public health in modern societies. Recent epidemiological studies have demonstrated that CKD is a significant risk for cardiovascular events independently of classical risk factors such as hypertension, dyslipidemia and diabetes. The mechanisms by which CKD increases the risk of cardiovascular events are currently under intensive investigation. Among various components of CKD, microalbuminuria is of particular interest, because it is a significant risk factor not only in diabetic and hypertensive subjects but also in the general population. Microalbuminuria is also closely associated with salt sensitivity of blood pressure, and the salt sensitivity is an independent risk factor for cardiovascular disease even in normotensive subjects. Several factors are likely to be involved in such associations, including the renin–angiotensin system (RAS), oxidative stress and inflammation. In addition, there may be more specific hemodynamic mechanisms in the kidney and other vital organs underlying these associations. This review describes ‘the strain vessel hypothesis’ as a possible mechanism for cerebrocardiorenal connections. In addition we discuss the significance of underlying diseases as cardiovascular risks of CKD as well as the role of RAS inhibition in the management of CKD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sarnak MJ, Levey AS, Schoolwerth AC, American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention, et al. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Hypertension. 2003;42:1050–65.

    Article  PubMed  CAS  Google Scholar 

  2. Imai E, Horio M, Watanabe T, Iseki K, Yamagata K, Hara S, et al. Prevalence of chronic kidney disease in the Japanese general population. Clin Exp Nephrol. 2009;13(6):621–30.

    Article  PubMed  Google Scholar 

  3. Keith DS, Nichols GA, Gullion CM, Brown JB, Smith DH. Longitudinal follow-up and outcomes among a population with chronic kidney disease in a large managed care organization. Arch Intern Med. 2004;164(6):659–63.

    Article  PubMed  Google Scholar 

  4. Cheung AK, Sarnak MJ, Yan G, Berkoben M, Heyka R, Kaufman A, et al. Cardiac diseases in maintenance hemodialysis patients: results of the HEMO Study. Kidney Int. 2004;65(6):2380–9.

    Article  PubMed  Google Scholar 

  5. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351(13):1296–305.

    Article  PubMed  CAS  Google Scholar 

  6. Bouchi R, Babazono T, Nyumura I, Toya K, Hayashi T, Ohta M, et al. Is a reduced estimated glomerular filtration rate a risk factor for stroke in patients with type 2 diabetes? Hypertens Res. 2009;32(5):381–6.

    Article  PubMed  CAS  Google Scholar 

  7. Gerstein HC, Mann JF, Pogue J, Dinneen SF, Hallé JP, Hoogwerf B, et al. Prevalence and determinants of microalbuminuria in high-risk diabetic and nondiabetic patients in the Heart Outcomes Prevention Evaluation Study. The HOPE Study Investigators. Diabetes Care. 2000;23:B35–9.

    Article  PubMed  Google Scholar 

  8. Nakayama M, Sato T, Sato H, Yamaguchi Y, Obara K, Kurihara I, et al. Different clinical outcomes for cardiovascular events and mortality in chronic kidney disease according to underlying renal disease: the Gonryo study. Clin Exp Nephrol 2010;14:333-9.

    Google Scholar 

  9. Weiner DE, Tabatabai S, Tighiouart H, Elsayed E, Bansal N, Griffith J, et al. Cardiovascular outcomes and all-cause mortality: exploring the interaction between CKD and cardiovascular disease. Am J Kidney Dis. 2006;48(3):392–401.

    Article  PubMed  Google Scholar 

  10. Ibsen H, Olsen MH, Wachtell K, Borch-Johnsen K, Lindholm LH, Mogensen CE, et al. Does albuminuria predict cardiovascular outcomes on treatment with losartan versus atenolol in patients with diabetes, hypertension, and left ventricular hypertrophy? The LIFE study. Diabetes Care. 2006;29:595–600.

    Article  PubMed  CAS  Google Scholar 

  11. Hillege HL, Fidler V, Diercks GF, van Gilst WH, de Zeeuw D, van Veldhuisen DJ, Prevention of Renal and Vascular End Stage Disease (PREVEND) Study Group, et al. Urinary albumin excretion predicts cardiovascular and noncardiovascular mortality in general population. Circulation. 2002;106:1777–82.

    Article  PubMed  CAS  Google Scholar 

  12. Yuyun MF, Khaw KT, Luben R, Welch A, Bingham S, Day NE, et al. Microalbuminuria and stroke in a British population: the European Prospective Investigation into Cancer in Norfolk (EPIC-Norfolk) population study. J Intern Med. 2004;255:247–56.

    Article  PubMed  CAS  Google Scholar 

  13. Ravera M, Ratto E, Vettoretti S, Viazzi F, Leoncini G, Parodi D, et al. Microalbuminuria and subclinical cerebrovascular damage in essential hypertension. J Nephrol. 2002;15:519–24.

    PubMed  Google Scholar 

  14. Wada M, Nagasawa H, Kurita K, Koyama S, Arawaka S, Kawanami T, et al. Microalbuminuria is a risk factor for cerebral small vessel disease in community-based elderly subjects. J Neurol Sci. 2007;255:27–34.

    Article  PubMed  CAS  Google Scholar 

  15. Klausen KP, Scharling H, Jensen JS. Very low level of microalbuminuria is associated with increased risk of death in subjects with cardiovascular or cerebrovascular diseases. J Intern Med. 2006;260:231–7.

    Article  PubMed  CAS  Google Scholar 

  16. Gerstein HC, Mann JF, Yi Q, Zinman B, Dinneen SF, Hoogwerf B, Hallé JP, HOPE Study Investigators, et al. Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. JAMA. 2001;286:421–6.

    Article  PubMed  CAS  Google Scholar 

  17. Fliser D, Buchholz K, Haller H, European Trial on Olmesartan and Pravastatin in Inflammation and Atherosclerosis (EUTOPIA) Investigators. Antiinflammatory effects of angiotensin II subtype 1 receptor blockade in hypertensive patients with microinflammation. Circulation. 2004;110:1103–7.

    Article  PubMed  CAS  Google Scholar 

  18. Ogawa S, Mori T, Nako K, Kato T, Takeuchi K, Ito S. Angiotensin II type 1 receptor blockers reduce urinary oxidative stress markers in hypertensive diabetic nephropathy. Hypertension. 2006;47:699–705.

    Article  PubMed  CAS  Google Scholar 

  19. Hillege HL, Janssen WM, Bak AA, Diercks GF, Grobbee DE, Crijns HJ, et al. Microalbuminuria is common, also in a nondiabetic, nonhypertensive population, and an independent indicator of cardiovascular risk factors and cardiovascular morbidity. J Intern Med. 2001;249:519–26.

    Article  PubMed  CAS  Google Scholar 

  20. Asselbergs FW, Diercks GF, Hillege HL, van Boven AJ, Janssen WM, Voors AA, et al. Effects of fosinopril and pravastatin on cardiovascular events in subjects with microalbuminuria. Circulation. 2004;110:2809–16.

    Article  PubMed  CAS  Google Scholar 

  21. Satchell SC, Tooke JE. What is the mechanism of microalbuminuria in diabetes: a role for the glomerular endothelium? Diabetologia. 2008;51:714–25.

    Article  PubMed  CAS  Google Scholar 

  22. Nosadini R, Velussi M, Brocco E, Abaterusso C, Piarulli F, Morgia G, et al. Altered transcapillary escape of albumin and microalbuminuria reflects two different pathogenetic mechanisms. Diabetes. 2005;54:228–33.

    Article  PubMed  CAS  Google Scholar 

  23. de Zeeuw D, Parving HH, Henning RH. Microalbuminuria as an early marker for cardiovascular disease. J Am Soc Nephrol. 2006;17:2100–5.

    Article  PubMed  Google Scholar 

  24. Stehouwer CD, Nauta JJ, Zeldenrust GC, Hackeng WH, Donker AJ, den Ottolander GJ. Urinary albumin excretion, cardiovascular disease, and endothelial dysfunction in non-insulin-dependent diabetes mellitus. Lancet. 1992;340:319–23.

    Article  PubMed  CAS  Google Scholar 

  25. Stehouwer CD, Smulders YM. Microalbuminuria and risk for cardiovascular disease: analysis of potential mechanisms. J Am Soc Nephrol. 2006;17:2106–11.

    Article  PubMed  CAS  Google Scholar 

  26. Malik AR, Sultan S, Turner ST, Kullo IJ. Urinary albumin excretion is associated with impaired flow- and nitroglycerin-mediated brachial artery dilatation in hypertensive adults. J Hum Hypertens. 2007;21:231–8.

    PubMed  CAS  Google Scholar 

  27. Diercks GF, Stroes ES, van Boven AJ, van Roon AM, Hillege HL, de Jong PE, et al. Urinary albumin excretion is related to cardiovascular risk indicators, not to flow-mediated vasodilation, in apparently healthy subjects. Atherosclerosis. 2002;163(1):121–6.

    Article  PubMed  CAS  Google Scholar 

  28. Iversen BM, Amann K, Kvam FI, Wang X, Ofstad J. Increased glomerular capillary pressure and size mediate glomerulosclerosis in SHR juxtamedullary cortex. Am J Physiol. 1998;274:F365–73.

    PubMed  CAS  Google Scholar 

  29. Johnson RJ, Gordon KL, Giachelli C, Kurth T, Skelton MM, Cowley AW Jr. Tubulointerstitial injury and loss of nitric oxide synthases parallel the development of hypertension in the Dahl-SS rat. J Hypertens. 2000;18:1497–505.

    Article  PubMed  CAS  Google Scholar 

  30. Eng E, Veniant M, Floege J, Fingerle J, Alpers CE, Menard J, et al. Renal proliferative and phenotypic changes in rats with two-kidney, one-clip Goldblatt hypertension. Am J Hypertens. 1994;7:177–85.

    PubMed  CAS  Google Scholar 

  31. Mori T, Cowley AW Jr. Role of pressure in angiotensin II-induced renal injury: chronic servo-control of renal perfusion pressure in rats. Hypertension. 2004;43:752–9.

    Article  PubMed  CAS  Google Scholar 

  32. Ericson AC, Sjöquist M, Ulfendahl HR. Heterogeneity in regulation of glomerular function. Acta Physiol Scand. 1982;114:203–9.

    Article  PubMed  CAS  Google Scholar 

  33. Heyeraas KJ, Aukland K. Interlobular arterial resistance: influence of renal arterial pressure and angiotensin II. Kidney Int. 1987;31:1291–8.

    Article  PubMed  CAS  Google Scholar 

  34. Takenaka T, Suzuki H, Okada H, Hayashi K, Ozawa Y, Saruta T. Biophysical signals underlying myogenic responses in rat interlobular artery. Hypertension. 1998;32:1060–5.

    PubMed  CAS  Google Scholar 

  35. Ito S, Nagasawa T, Abe M, Mori T. Strain vessel hypothesis: a viewpoint for linkage of albuminuria and cerebro-cardiovascular risk. Hypertens Res. 2009;32(2):115–21.

    Article  PubMed  Google Scholar 

  36. Greenberg SM. Small vessel, big problem. N Engl J Med. 2006;354:1451–7.

    Article  PubMed  CAS  Google Scholar 

  37. Auer RN, Sutherland GR. Primary intracerebral hemorrhage: pathophysiology. Can J Neurol Sci. 2005;32:S3–12.

    PubMed  Google Scholar 

  38. Dubas F. Small vessel pathology and cerebral hemorrhage. J Neuroradiol. 2003;30:298–302.

    PubMed  CAS  Google Scholar 

  39. Camici PG, Crea F. Coronary microvascular dysfunction. N Engl J Med. 2007;356:830–40.

    Article  PubMed  CAS  Google Scholar 

  40. Cornelissen AJ, Dankelman J, VanBavel E, Stassen HG, Spaan JA. Myogenic reactivity and resistance distribution in the coronary arterial tree: a model study. Am J Physiol Heart Circ Physiol. 2000;278(5):H1490–9.

    PubMed  CAS  Google Scholar 

  41. Hashimoto J, Aikawa T, Imai Y. Large artery stiffening as a link between cerebral lacunar infarction and renal albuminuria. Am J Hypertens. 2008;21(12):1304–9.

    Article  PubMed  CAS  Google Scholar 

  42. O’Rourke MF, Safar ME. Relationship between aortic stiffening and microvascular disease in brain and kidney: cause and logic of therapy. Hypertension. 2005;46:200–4.

    Article  PubMed  Google Scholar 

  43. Struijker Boudier HA, Cohuet GM, Baumann M, Safar ME. The heart, macrocirculation and microcirculation in hypertension: a unifying hypothesis. J Hypertens. 2003;21:S19–23.

    Article  Google Scholar 

  44. Cubeddu LX, Hoffmann IS, Aponte LM, Nuñez-Bogesits R, Medina-Suniaga H, Roa M, et al. Role of salt sensitivity, blood pressure, and hyperinsulinemia in determining high upper normal levels of urinary albumin excretion in a healthy adult population. Am J Hypertens. 2003;16:343–9.

    Article  PubMed  CAS  Google Scholar 

  45. Nesović M, Stojanović M, Nesović MM, Cirić J, Zarković M. Microalbuminuria is associated with salt sensitivity in hypertensive patients. J Hum Hypertens. 1996;10:573–6.

    PubMed  Google Scholar 

  46. Campese VM. Salt sensitivity in hypertension. Renal and cardiovascular implications. Hypertension. 1994;23:531–50.

    PubMed  CAS  Google Scholar 

  47. Weinberger MH, Fineberg NS, Fineberg SE, Weinberger M. Salt sensitivity, pulse pressure, and death in normal and hypertensive humans. Hypertension. 2001;37:429–32.

    PubMed  CAS  Google Scholar 

  48. Dickhout JG, Mori T, Cowley AW Jr. Tubulovascular nitric oxide crosstalk: buffering of angiotensin II-induced medullary vasoconstriction. Circ Res. 2002;91:487–93.

    Article  PubMed  CAS  Google Scholar 

  49. Cowley AW Jr. Long-term control of arterial blood pressure. Physiol Rev. 1992;72:231–300.

    PubMed  Google Scholar 

  50. Mori T, Cowley AW Jr, Ito S. Molecular mechanisms and therapeutic strategies of chronic renal injury: physiological role of angiotensin II-induced oxidative stress in renal medulla. J Pharmacol Sci. 2006;100:2–8.

    Article  PubMed  CAS  Google Scholar 

  51. Mori T, Cowley AW. Angiotensin II-NAD(P)H oxidase-stimulated superoxide modifies tubulovascular nitric oxide cross-talk in renal outer medulla. Hypertension. 2003;42:588–93.

    Article  PubMed  CAS  Google Scholar 

  52. Abe M, O’Connor P, Kaldunski M, Liang M, Roman RJ, Cowley AW Jr. Effect of sodium delivery on superoxide and nitric oxide in the medullary thick ascending limb. Am J Physiol Renal Physiol. 2006;291:F350–7.

    Article  PubMed  CAS  Google Scholar 

  53. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med. 1993;329(20):1456–62.

    Article  PubMed  CAS  Google Scholar 

  54. Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345(12):861–9.

    Article  PubMed  CAS  Google Scholar 

  55. Randomised placebo-controlled trial of effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non-diabetic nephropathy. The GISEN Group (Gruppo Italiano di Studi Epidemiologici in Nefrologia). Lancet. 1997;349(9069):1857–63.

  56. Agodoa LY, Appel L, Bakris GL, Beck G, Bourgoignie J, Briggs JP, et al. Effect of ramipril vs amlodipine on renal outcomes in hypertensive nephrosclerosis: a randomized controlled trial. JAMA. 2001;285(21):2719–28.

    Article  PubMed  CAS  Google Scholar 

  57. Jafar TH, Schmid CH, Landa M, Giatras I, Toto R, Remuzzi G, et al. Angiotensin-converting enzyme inhibitors and progression of nondiabetic renal disease. A meta-analysis of patient-level data. Ann Intern Med. 2001;135(2):73–87.

    PubMed  CAS  Google Scholar 

  58. Ibsen H, Olsen MH, Wachtell K, Borch-Johnsen K, Lindholm LH, Mogensen CE, et al. Reduction in albuminuria translates to reduction in cardiovascular events in hypertensive patients: losartan intervention for endpoint reduction in hypertension study. Hypertension. 2005;45(2):198–202.

    Article  PubMed  CAS  Google Scholar 

  59. de Zeeuw D, Remuzzi G, Parving HH, Keane WF, Zhang Z, Shahinfar S, et al. Proteinuria, a target for renoprotection in patients with type 2 diabetic nephropathy: lessons from RENAAL. Kidney Int. 2004;65(6):2309–20.

    Article  PubMed  Google Scholar 

  60. de Zeeuw D, Remuzzi G, Parving HH, Keane WF, Zhang Z, Shahinfar S, et al. Albuminuria, a therapeutic target for cardiovascular protection in type 2 diabetic patients with nephropathy. Circulation. 2004;110(8):921–7.

    Article  PubMed  Google Scholar 

  61. ONTARGET Investigators, Yusuf S, Teo KK, Pogue J, Dyal L, Copland I, Schumacher H, et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med. 2008;358(15):1547–59.

    Article  PubMed  CAS  Google Scholar 

  62. Mann JF, Schmieder RE, McQueen M, Dyal L, Schumacher H, Pogue J, et al. Renal outcomes with telmisartan, ramipril, or both, in people at high vascular risk (the ONTARGET study): a multicentre, randomised, double-blind, controlled trial. Lancet. 2008;372(9638):547–53.

    Article  PubMed  CAS  Google Scholar 

  63. Mann JF, Schmieder RE, Dyal L, McQueen MJ, Schumacher H, Pogue J, et al. Effect of telmisartan on renal outcomes: a randomized trial. Ann Intern Med. 2009;151(1):1–10.

    PubMed  Google Scholar 

  64. Ito S. Usefulness of RAS inhibition depends on baseline albuminuria. Nat Rev Nephrol. 2010;6(1):10–1.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadayoshi Ito.

About this article

Cite this article

Ito, S. Cardiorenal connection in chronic kidney disease. Clin Exp Nephrol 16, 8–16 (2012). https://doi.org/10.1007/s10157-011-0493-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-011-0493-2

Keywords

Navigation