Skip to main content
Log in

Renal preservation effect of ubiquinol, the reduced form of coenzyme Q10

  • Original Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

The aim of this study was to evaluate the renal preservation effect of ubiquinol, the reduced form of coenzyme Q10 (CoQ10).

Methods

Three-week-old heminephrectomized male Sprague–Dawley rats were divided into three groups (10 animals each): diet with normal (0.3%) salt, high (8%) salt, and high salt plus 600 mg/kg body weight/day of ubiquinol, for 4 weeks. Systolic blood pressure (SBP), urinary albumin (u-alb), superoxide anion generation (lucigenin chemiluminescence) and ubiquinol levels in renal tissues were examined.

Results

Salt loading increased SBP (111.0 ± 3.6 vs. 169.4 ± 14.3 mmHg, p < 0.01) and u-alb (43.8 ± 28.0 vs. 2528.7 ± 1379.0 µg/day, p < 0.02). These changes were associated with stimulation of superoxide generation in the kidney (866.3 ± 102.8 vs. 2721.4 ± 973.3 RLU/g kidney, p < 0.01). However, ubiquinol decreased SBP (143.9 ± 29.0 mmHg, p < 0.05), u-alb (256.1 ± 122.1 µg/day, p < 0.02), and renal superoxide production (877.8 ± 195.6 RLU/g kidney, p < 0.01), associated with an increase in renal ubiquinol levels.

Conclusion

Ubiquinol, the reduced form of CoQ10, effectively ameliorates renal function, probably due to its antioxidant effect. Thus, ubiquinol may be a candidate for the treatment of patients with kidney disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lysaght J. Maintenance dialysis population dynamics: current trends and long-term implications. J Am Soc Nephrol. 2002;13(Suppl):S37–40.

    PubMed  Google Scholar 

  2. National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002;39(2 Suppl 1):S1–266.

    Google Scholar 

  3. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351:1296–305.

    Article  CAS  PubMed  Google Scholar 

  4. Cachofeiro V, Goicochea M, de Vinuesa SG, Oubina P, Lahera V, Luno J. Oxidative stress and inflammation, a link between chronic kidney disease and cardiovascular disease. Kidney Int. 2008;74(Suppl):S4–9.

    Article  Google Scholar 

  5. Nagase M, Yoshida S, Shibata S, Nagase T, Gotoda T, Ando K, et al. Enhanced aldosterone signaling in the early nephropathy of rats with metabolic syndrome: possible contribution of fat-derived factors. J Am Soc Nephrol. 2006;17:3438–46.

    Article  CAS  PubMed  Google Scholar 

  6. Liu F, Wei CC, Wu SJ, Chenier I, Zhang SL, Filep JG, et al. Apocynin attenuates tubular apoptosis and tubulointerstitial fibrosis in transgenic mice independent of hypertension. Kidney Int. 2009;75:156–66.

    Article  CAS  PubMed  Google Scholar 

  7. Manning RD Jr, Tian N, Meng S. Oxidative stress and antioxidant treatment in hypertension and the associated renal damage. Am J Nephrol. 2005;25:311–7.

    Article  CAS  PubMed  Google Scholar 

  8. Hosoe K, Kitano M, Kishida H, Kubo H, Fujii K, Kitahara M. Study on safety and bioavailability of ubiquinol (Kaneka QH) after single and 4-week multiple oral administration to healthy volunteers. Regul Toxicol Pharmacol. 2007;47:19–28.

    Article  CAS  PubMed  Google Scholar 

  9. Carlström M, Sällström J, Skøtt O, Larsson E, Persson AE. Uninephrectomy in young age or chronic salt loading causes salt-sensitive hypertension in adult rats. Hypertension. 2007;49:1342–50.

    Article  PubMed  Google Scholar 

  10. Kitano M, Watanabe D, Oda S, Kubo H, Kishida H, Fujii K, et al. Subchronic oral toxicity of ubiquinol in rats and dogs. Int J Toxicol. 2008;27:189–215.

    Article  CAS  PubMed  Google Scholar 

  11. Matsui H, Shimosawa T, Uetake Y, Wang H, Ogura S, Kaneko T, et al. Protective effect of potassium against the hypertensive cardiac dysfunction: association with reactive oxygen species reduction. Hypertension. 2006;48:225–31.

    Article  CAS  PubMed  Google Scholar 

  12. Kishimoto C, Tomioka N, Nakayama Y, Miyamoto M. Anti-oxidant effects of coenzyme Q10 on experimental viral myocarditis in mice. J Cardiovasc Pharmacol. 2003;42:588–92.

    Article  CAS  PubMed  Google Scholar 

  13. Bello RI, Gómez-Díaz C, Burón MI, Alcaín FJ, Navas P, Villalba JM. Enhanced anti-oxidant protection of liver membranes in long-lived rats fed on a coenzyme Q10-supplemented diet. Exp Gerontol. 2005;40:694–706.

    Article  CAS  PubMed  Google Scholar 

  14. Mohr D, Umeda Y, Redgrave TG, Stocker R. Antioxidant defenses in rat intestine and mesenteric lymph. Redox Rep. 1999;4:79–87.

    Article  CAS  PubMed  Google Scholar 

  15. Lim SC, Tan HH, Goh SK, Subramanian T, Sum CF, Tan IK, et al. Oxidative burden in prediabetic and diabetic individuals: evidence from plasma coenzyme Q10. Diabet Med. 2006;23:1344–9.

    Article  CAS  PubMed  Google Scholar 

  16. Yamamoto Y, Yamashita S. Plasma ubiquinone to ubiquinol ratio in patients with hepatitis, cirrhosis, and hepatoma, and in patients treated with percutaneous transluminal coronary reperfusion. Bio Factors. 1999;9:241–6.

    CAS  Google Scholar 

  17. Iwamoto Y, Yamagami T, Folkers K, Blomqvist CG. Deficiency of coenzyme Q10 in hypertensive rats and reduction of deficiency by treatment with coenzyme Q10. Biochem Biophys Res Commun. 1974;58:743–8.

    Article  CAS  PubMed  Google Scholar 

  18. Mori TA, Burke V, Puddey I, Irish A, Cowpland CA, Beilin L, et al. The effects of [omega]3 fatty acids and coenzyme Q10 on blood pressure and heart rate in chronic kidney disease: a randomized controlled trial. J Hypertens. 2009;27:1863–72.

    Article  CAS  PubMed  Google Scholar 

  19. Ho MJ, Bellusci A, Wright JM. Blood pressure lowering efficacy of coenzyme Q10 for primary hypertension. Cochrane Database Syst Rev. 2009;4:CD007435.

    Google Scholar 

  20. Aberg F, Appelkvist EL, Dallner G, Ernster L. Distribution and redox state of ubiquinones in rat and human tissues. Arch Biochem Biophys. 1992;295:230–4.

    Article  CAS  PubMed  Google Scholar 

  21. Kawarazaki H, Ando K, Nagae A, Fujita M, Matsui H, Fujita T. Mineralocorticoid receptor activation contributes to salt-induced hypertension and renal injury in prepubertal Dahl salt-sensitive rats. Nephrol Dial Transplant; 2010 (in press).

  22. Kido M, Ando K, Onozato ML, Tojo A, Yoshikawa M, Ogita T, et al. Protective effect of dietary potassium against the vascular injury in salt-sensitive hypertension. Hypertension. 2008;51:225–31.

    Article  CAS  PubMed  Google Scholar 

  23. Gregg D, Rauscher FM, Goldschmidt-Clermont PJ. Rac regulates cardiovascular superoxide through diverse molecular interactions: more than a binary GTP switch. Am J Physiol Cell Physiol. 2003;285:C723–34.

    CAS  PubMed  Google Scholar 

  24. Vaziri ND, Wang XQ, Oveisi F, Rad B. Induction of oxidative stress by glutathione depletion causes severe hypertension in normal rats. Hypertension. 2000;36:142–6.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Ishikawa.

About this article

Cite this article

Ishikawa, A., Kawarazaki, H., Ando, K. et al. Renal preservation effect of ubiquinol, the reduced form of coenzyme Q10. Clin Exp Nephrol 15, 30–33 (2011). https://doi.org/10.1007/s10157-010-0350-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-010-0350-8

Keywords

Navigation