Skip to main content
Log in

Leading-edge populations do not show low genetic diversity or high differentiation in a wind-pollinated tree

  • Original article
  • Published:
Population Ecology

Abstract

Climate changes can shift species’ ranges. Knowledge on genetic variation of the leading-edge populations provides critical information to understand responses and adaptation of plants to projected climate warming. To date, the research into genetic variation of leading-edge populations has been limited, particularly in the role of wind-mediated pollen flow in maintaining high genetic variation. Castanopsis sclerophylla (Fagaceae) is a wind-pollinated and gravity-dispersed tree. In the present study, we used seven polymorphic microsatellites to genotype 482 samples from five leading-edge and 12 non-edge populations. Significant effects of recent population bottleneck events were found in three of the five leading-edge populations, indicating that the leading-edge populations might have been recolonized after the Last Glacial Maximum. Genetic diversity was higher, though not significantly, in leading-edge than in non-edge populations. Relationship between genetic diversity and latitude indicated an increasing trend of genetic diversity towards leading-edge populations. No significant difference in genetic differentiation was found between leading-edge and non-edge populations. The inconsistence with the general predictions by leading-edge colonization model could be explained by high gene flow via pollen grains. Pollen-mediated gene flow could maintain high genetic diversity within and low differentiation among leading-edge populations. In response to climate warming, high genetic variation may provide leading-edge populations raw materials for evolutionary adaptation to future environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alleaume-Benharira M, Pen IR, Ronce O (2006) Geographical patterns of adaptation within a species’ range: interactions between drift and gene flow. J Evol Biol 19:203–215

    Article  PubMed  CAS  Google Scholar 

  • Arnaud-Haond S, Teixeira S, Massa SI, Billot C, Saenger P, Coupland G, Duarte CM, Serrao EA (2006) Genetic structure at range edge: low diversity and high inbreeding in Southeast Asian mangrove (Avicennia marina) populations. Mol Ecol 15:3515–3525

    Article  PubMed  CAS  Google Scholar 

  • Austerlitz F, Garnier-Géré PH (2003) Modelling the impact of colonisation on genetic diversity and differentiation of forest trees: interaction of life cycle, pollen flow and seed long-distance dispersal. Heredity 90:282–290

    Article  PubMed  CAS  Google Scholar 

  • Beaumont MA (1999) Detecting population expansion and decline using microsatellites. Genetics 153:2013–2029

    PubMed  CAS  Google Scholar 

  • Bialozyt R, Ziegenhagen B, Petit RJ (2006) Contrasting effects of long distance seed dispersal on genetic diversity during range expansion. J Evol Biol 19:12–20

    Article  PubMed  CAS  Google Scholar 

  • Bridle JR, Polechov J, Kawata M, Butlin RK (2010) Why is adaptation prevented at ecological margins? New insights from individual-based simulations. Ecol Lett 13:485–494

    Article  PubMed  Google Scholar 

  • Chen X-Y, Li YY, Wu TY, Zhang X, Lu HP (2003) Size-class differences in genetic structure of Metasequoia glyptostroboides Hu et Cheng (Taxodiaceae) plantations in Shanghai. Silvae Genet 52:107–109

    Google Scholar 

  • Chen X-Y, Fan X-X, Hu X-S (2008) Roles of seed and pollen dispersal in natural regeneration of Castanopsis fargesii (Fagaceae): implications for forest management. For Ecol Manag 256:1143–1150

    Article  Google Scholar 

  • Chen Y, Compton SG, Liu M, Chen X-Y (2012) Fig trees at the northern limit of their range: the distributions of cryptic pollinators indicate multiple glacial refugia. Mol Ecol 21:1687–1701

    Article  PubMed  Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    PubMed  CAS  Google Scholar 

  • Cottrell JE, Munro RC, Tabbener HE, Milner AD, Forrest GI, Lowe AJ (2003) Comparison of fine-scale genetic structure using nuclear microsatellites within two British oakwoods differing in population history. For Ecol Manag 176:287–303

    Article  Google Scholar 

  • Dieringer D, Schlötterer C (2003) Microsatellite analyser (MSA): a platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes 3:167–169

    Article  CAS  Google Scholar 

  • Duminil J, Fineschi S, Hampe A, Jordano P, Salvini D, Vendramin GG, Petit RJ (2007) Can population genetic structure be predicted from life-history traits? Am Nat 169:662–672

    Article  PubMed  Google Scholar 

  • Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol Ecol 17:1170–1188

    Article  PubMed  CAS  Google Scholar 

  • El Mousadik A, Petit RJ (1996) Chloroplast DNA phylogeography of the argan tree of Morocco. Mol Ecol 5:547–555

    Article  PubMed  Google Scholar 

  • Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435–445

    Article  PubMed  CAS  Google Scholar 

  • Ennos RA (1994) Estimating the relative rates of pollen and seed migration among plants populations. Heredity 72:250–259

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Foll M, Petit RJ (2009) Genetic consequences of range expansions. Annu Rev Ecol Evol Syst 40:481–501

    Article  Google Scholar 

  • Fan XX, Shen L, Zhang X, Chen X-Y, Fu C (2004) Assessing genetic diversity of Ginkgo biloba L. (Ginkgoaceae) populations from China by RAPD markers. Biochem Genet 42:269–278

    Article  PubMed  CAS  Google Scholar 

  • Fang JY, Song YC, Liu HY, Piao SL (2002) Vegetation-climate relationship and its application in the division of vegetation zone in China. Acta Bot Sin 44:1105–1122

    Google Scholar 

  • Fayard J, Klein EK, Lefevrè F (2009) Long distance dispersal and the fate of a gene from the colonization front. J Evol Biol 22:2171–2182

    Article  PubMed  CAS  Google Scholar 

  • Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Google Scholar 

  • Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–467

    Article  PubMed  Google Scholar 

  • Hamrick JL, Godt MJW (1989) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics, breeding, and genetic resources. Sinauer, Sunderland, pp 43–63

    Google Scholar 

  • Hamrick JL, Godt MJW (1996) Effects of life history traits on genetic diversity in plant species. Philos Trans R Soc B Biol Sci 351:1291–1298

    Article  Google Scholar 

  • Hansson B, Westerberg L (2002) On the correlation between heterozygosity and fitness in natural populations. Mol Ecol 11:2467–2474

    Article  PubMed  Google Scholar 

  • Harrison SP, Yu G, Takahara H, Prentice IC (2001) Palaeovegetation: diversity of temperate plants in East Asia. Nature 413:129–130

    Article  PubMed  CAS  Google Scholar 

  • Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638

    PubMed  CAS  Google Scholar 

  • Hensen I, Oberprieler C (2005) Effects of population size on genetic diversity and seed production in the rare Dictamnus albus (Rutaceae) in central Germany. Conserv Genet 6:63–73

    Article  Google Scholar 

  • Hewitt G (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linnean Soc 58:247–276

    Google Scholar 

  • Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913

    Article  PubMed  CAS  Google Scholar 

  • Honjo M, Ueno S, Tsumura Y, Handa T, Washitani I, Ohsawa R (2008) Tracing the origins of stocks of the endangered species Primula sieboldii using nuclear microsatellites and chloroplast DNA. Conserv Genet 9:1139–1147

    Article  CAS  Google Scholar 

  • Hutchison DW, Templeton AR (1999) Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53:1898–1914

    Article  Google Scholar 

  • Isagi Y, Suhandono S (1997) PCR primers amplifying microsatellite loci of Quercus myrsinifolia Blume and their conservation between oak species. Mol Ecol 6:897–899

    Article  PubMed  CAS  Google Scholar 

  • Li YY, Guan SM, Yang SZ, Luo Y, Chen X-Y (2012) Genetic decline and inbreeding depression in the extremely rare tree, Ostrya rehderiana Chun (Betulaceae). Conserv Genet 13:343–347

    Article  Google Scholar 

  • Manni F, Guerard E, Heyer E (2004) Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by “Monmonier’s algorithm”. Hum Biol 76:173–190

    Article  PubMed  Google Scholar 

  • Meirmans PG (2006) Using the AMOVA framework to estimate a standardized genetic differentiation measure. Evolution 60:2399–2402

    PubMed  Google Scholar 

  • Member of China Quaternary Pollen Data Base (2000) Pollen-based biome reconstruction at Middle Holocene (6 Ka BP) and Last Galcial Maximum (18 ka BP) in China. Acta Bot Sin 42:1201–1209

    Google Scholar 

  • Monmonier M (1973) Maximum-difference barriers: an alternative numerical regionalization method. Geogr Anal 5:245–261

    Article  Google Scholar 

  • Muir G, Lowe AJ, Fleming CC, Vogl C (2004) High nuclear genetic diversity, high levels of outcrossing and low differentiation among remnant populations of Quercus petraea at the margin of its range in Ireland. Ann Bot London 93:691–697

    Article  CAS  Google Scholar 

  • Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. J Mol Evol 19:153–170

    Article  PubMed  CAS  Google Scholar 

  • Pannell JR, Dorken ME (2006) Colonisation as a common denominator in plant metapopulations and range expansions: effects on genetic diversity and sexual systems. Landsc Ecol 21:837–848

    Article  Google Scholar 

  • Parisod C, Bonvin G (2008) Fine-scale genetic structure and marginal processes in an expanding population of Biscutella laevigata L. (Brassicaceae). Heredity 101:536–542

    Article  PubMed  CAS  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Petit RJ, Duminil J, Fineschi S, Hampe A, Salvini D, Vendramin GG (2005) Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Mol Ecol 14:689–701

    Article  PubMed  CAS  Google Scholar 

  • Piry S, Luikart G, Cornuet J-M (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Pluess AR (2011) Pursuing glacier retreat: genetic structure of a rapidly expanding Larix decidua population. Mol Ecol 20:473–485

    Article  PubMed  Google Scholar 

  • Preifer M, Passalacqua NG, Bartram S, Schatz B, Croce A, Carey PD, Kraudelt H, Jeltsch F (2010) Conservation priorities differ at opposing species borders of a European orchid. Biol Conserv 143:2207–2220

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Puşcaş M, Taberlet P, Choler P (2008) No positive correlation between species and genetic diversity in European alpine grasslands dominated by Carex curvula. Divers Distrib 14:852–861

    Article  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ray N, Excoffier L (2010) A first step towards inferring levels of long-distance dispersal during past expansions. Mol Ecol Resour 10:902–914

    Article  PubMed  Google Scholar 

  • Shi MM, Michalski SG, Chen X-Y, Durka W (2011) Isolation by elevation: genetic structure at neutral and putatively non-neutral loci in a dominant tree of subtropical forests, Castanopsis eyrei. PLoS One 6:e21302

    Article  PubMed  CAS  Google Scholar 

  • Stanley R, Linskens H (1974) Pollen: biology, biochemistry and management. Springer, Berlin

    Google Scholar 

  • Straub SCK, Doyle JJ (2009) Conservation genetics of Amorpha georgiana (Fabaceae), an endangered legume of the Southeastern United States. Mol Ecol 18:4349–4365

    Article  PubMed  Google Scholar 

  • Streiff R, Ducousso A, Lexer C, Steinkellner H, Gloessl J, Kremer A (1999) Pollen dispersal inferred from paternity analysis in a mixed oak stand of Quercus robur L. and Q. petraea (Matt.) Liebl. Mol Ecol 8:831–841

    Article  Google Scholar 

  • Sun XJ, Song CQ, Chen XD (1999) China Quaternary pollen database (CPD) and “Biome 6000” project. Adv Earth Sci 14:407–411

    Google Scholar 

  • Sutherland BG, Belaj A, Nier S, Cottrell JE, Vaughan SP, Hubert J, Russell K (2010) Molecular biodiversity and population structure in common ash (Fraxinus excelsior L.) in Britain: implications for conservation. Mol Ecol 19:2196–2211

    Article  PubMed  CAS  Google Scholar 

  • Ueno S, Yoshimaru H, Kawahara T, Yamamoto S (2000) Isolation of microsatellite markers in Castanopsis cuspidata var. sieboldii Nakai from an enriched library. Mol Ecol 9:1188–1190

    PubMed  CAS  Google Scholar 

  • Ueno S, Yoshimaru H, Kawahara T, Yamamoto S (2003) A further six microsatellite markers for Castanopsis cuspidata var. sieboldii Nakai. Conserv Genet 4:813–815

    Article  CAS  Google Scholar 

  • van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • van Rossum F, Vekemans X, Meerts P, Gratia E, Lefebvre C (1997) Allozyme variation in relation to ecotypic differentiation and population size in marginal populations of Silene nutans. Heredity 78:552–560

    Article  Google Scholar 

  • Wang W-T (1992) On some distribution patterns and some migration routes found in the eastern Asiatic region. Acta Phytotaxon Sin 30:1–24

    CAS  Google Scholar 

  • Wang R, Compton SG, Chen X-Y (2011) Fragmentation can increase spatial genetic structure without decreasing pollen-mediated gene flow in a wind-pollinated tree. Mol Ecol 20:4421–4432

    Article  PubMed  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Yakimowski SB, Eckert CG (2008) Populations do not become less genetically diverse or more differentiated towards the northern limit of the geographical range in clonal Vaccinium stamineum (Ericaceae). New Phytol 180:534–544

    Article  PubMed  Google Scholar 

  • Yu J, Li J, Chen H (2009) Diurnal variation of surface wind over central eastern China. Climate Dynam 33:1089–1097

    Article  Google Scholar 

  • Zhang X, Shi M–M, Shen D-W, Chen X-Y (2012) Habitat loss other than fragmentation per se decreased nuclear and chloroplast genetic diversity in a monoecious tree. PLoS One 7:e39146

    Article  PubMed  CAS  Google Scholar 

  • Zheng Z (2000) Late Quaternary vegetational and climatic changes in the tropical and subtropical areas of China. Acta Micropalae Sin 17:125–146

    Google Scholar 

Download references

Acknowledgments

We appreciate Walter Durka to give constructive suggestions and supply some statistical helps. We thank Naoki Tani and two anonymous reviewers for helpful comments and suggestes and Shuo Yu, Mei-Hua Liu, Dawei Gao, Bang-Quan Gao and Xiao-Yan Wang for helps in sample collection. This work was supported by the National Natural Science Foundation of China (30970430, 30470287) and the Fundamental Research Funds for the Central Universities (78220028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Yong Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 192 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, MM., Chen, XY. Leading-edge populations do not show low genetic diversity or high differentiation in a wind-pollinated tree. Popul Ecol 54, 591–600 (2012). https://doi.org/10.1007/s10144-012-0332-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10144-012-0332-7

Keywords

Navigation