Skip to main content

Advertisement

Log in

RNA Seq analysis for transcriptome profiling in response to classical swine fever vaccination in indigenous and crossbred pigs

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

In present investigation, differential expression of transcriptome after classical swine fever (CSF) vaccination has been explored at the cellular level in crossbred and indigenous (desi) piglets. RNA Sequencing by Expectation-Maximization (RSEM) package was used to quantify gene expression from RNA Sequencing data, and differentially expressed genes (DEGs) were identified using EBSeq, DESeq2, and edgeR softwares. After analysis, 5222, 6037, and 6210 common DEGs were identified in indigenous post-vaccinated verses pre-vaccinated, crossbred post-vaccinated verses pre-vaccinated, and post-vaccinated crossbred verses indigenous pigs, respectively. Functional annotation of these DEGs showed enrichment of antigen processing-cross presentation, B cell receptor signaling, T cell receptor signaling, NF-κB signaling, and TNF signaling pathways. The interaction network among the immune genes included more number of genes with greater connectivity in vaccinated crossbred than the indigenous piglets. Higher expression of IRF3, IL1β, TAP1, CSK, SLA2, SLADM, and NF-kB in crossbred piglets in comparison to indigenous explains the better humoral response observed in crossbred piglets. Here, we predicted that the processed CSFV antigen through the T cell receptor signaling cascade triggers the B cell receptor-signaling pathway to finally activate MAPK kinase and NF-κB signaling pathways in B cell. This activation results in expression of genes/transcription factors that lead to B cell ontogeny, auto immunity and immune response through antibody production. Further, immunologically important genes were validated by qRT-PCR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CSF:

Classical swine fever

MDA:

Maternally derived antibodies

PBMC:

Peripheral blood mononuclear cells,

FCS:

Fetal calf serum

GTF:

Gene transfer file

GO:

Gene ontology

RIN:

RNA integrity number

DEGs:

Differentially expressed genes

cELISA:

Competitive enzyme linked immunosorbent assay

BioGRID:

Biological General Repository for Interaction Datasets

IRF3:

Interferon regulatory factor 3

TAP1:

Transport associated protein1

NF-kB:

Nuclear factor kappaB,

SLA2:

Swine leucocyte antigen 2

IL1β:

Interleukin1 β

RSEM:

RNA Seq by expectation maximization

BCR:

B cell receptor

References

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borca MV, Gudmundsdottir I, Fernández-Sainzb IJ, Holinkab LG, Risatti GR (2008) Patterns of cellular gene expression in swine macrophages infected with highly virulent classical swine fever virus strain Brescia. Virus Res 138:89–96

    Article  CAS  PubMed  Google Scholar 

  • Cao Z, Guo K, Zheng M, Ning P, Li H, Kang K, Lin Z, Zhang C, Liang W, Zhang Y (2015) A comparison of the impact of Shimen strain and C strain of classical swine fever virus on toll-like receptor expression. J Gen virol. doi:10.1099/vir0000129

    PubMed Central  Google Scholar 

  • Chen H, Li C, Fang M, Zhu M, Li X, Zhou R, Li K, Zhao S (2009) Understanding Haemophilus parasuis infection in porcine spleen through a transcriptomics approach. BMC Genomics 10:64

    Article  PubMed  PubMed Central  Google Scholar 

  • Chia YL, Ng CH, Lashmit P, Chu KL, Lew QJ, Ho JP, Lim HL, Nissom PM, Stinski MF, Chao SH (2014) Inhibition of human cytomegalovirus replication by overexpression of CREB1. Antivir Res 102:11–22

    Article  CAS  PubMed  Google Scholar 

  • Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, Szcześniak MW, Gaffney DJ, Elo LL, Zhang X, Mortazavi A (2016) A survey of best practices for RNA seq data analysis. Genome Biol 17:181

    Article  PubMed  PubMed Central  Google Scholar 

  • Davies G, Genini S, Bishop SC, Guiffra E (2009) An assessment of opportunities to dissect host genetic variation in resistance to infectious diseases in livestock. Animal 3(3):415–436

    Article  CAS  PubMed  Google Scholar 

  • Dev A, Iyer S, Razani B, Cheng G (2011) NF-κB and innate immunity. Curr Top Microbiol Immunol 349:115–143

    CAS  PubMed  Google Scholar 

  • Dong XY, Liu WJ, Zhao MQ, Wang JY, Pei JJ, Luo YW, Ju CM, Chen JD (2013) Classical swine fever virus triggers RIG-I and MDA5-dependent signaling pathway to IRF-3 and NF-κB activation to promote secretion of interferon and inflammatory cytokines in porcine alveolar macrophages. Virol J 10:286

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng L, Li XQ, Li XN, Li J, Meng XM, Zhang HY, Liang JJ, Li H, Sun SK, Cai XB, Su LJ, Yin S, Li YS, Luo TR (2012) In vitro infection with classical swine fever virus inhibits the transcription of immune response genes. Virol J 9:175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flori L, Rogel-Gaillard C, Cochet M, Lemonnier G, Hugot K, Chardon P, Robin S, Lefevre F (2008) Transcriptomic analysis of the dialogue between pseudorabies virus and porcine epithelial cells during infection. BMC Genomics 9:123

    Article  PubMed  PubMed Central  Google Scholar 

  • Gladue DP, Zhu J, Holinka LG, Fernandez-Sainz I, Carrillo C, Prarat MV, O’Donnell V, Borca MV (2010) Patterns of gene expression in swine macrophages infected with classical swine fever virus detected by microarray. Virus Res 151:10–18

    Article  CAS  PubMed  Google Scholar 

  • Haller O, Staeheli P, Kochs G (2007) Interferon-induced Mx proteins in antiviral host defense. Biochimie 89:812–818

    Article  CAS  PubMed  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25

    Article  PubMed  PubMed Central  Google Scholar 

  • Leng N, Dawson JA, Thomson JA, Ruotti V, Rissman AI, Smits BMG, Haag JD, Gould MN, Stewart RM, Kendziorski C (2013) EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics 29(8):1035–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Yu YJ, Feng L, Cai XB, Tang HB, Sun SK, Zhang HY, Liang JJ, Luo TR (2010) Global transcriptional profiles in peripheral blood mononuclear cell during classical swine fever virus infection. Virus Res 148(1–2):60–70

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Liu H, Wang P, Wang L, Sun Y, Liu G, Zhang P, Li K, Jiang S, Jiang Y (2016) RNA-Seq analysis reveals genes underlying different disease responses to porcine circovirus type 2 in pigs. PLoS One 11(5):e0155502. doi:10.1371/journal.pone.0155502

    Article  PubMed  PubMed Central  Google Scholar 

  • Majewska M, Lipka A, Paukszto L, Jastrzebski JP, Myszczynski K, Gowkielewicz M, Jozwik M, Majewski MK (2017) Transcriptome profile of the human placenta. Funct Integr Genomics. doi:10.1007/s10142-017-0555-y

    Google Scholar 

  • Newton K, Dixit VM (2012) Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol 4(3):a006049

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Brien LM, Margaret GS, Stephen GL, David RM, Sophie JS, Mark SL, Thomas RL, Stuart DP (2014) Vaccination with recombinant adenoviruses expressing Ebola virus glycoprotein elicits protection in the interferon alpha/beta receptor knock-out mouse. JVirol 452–53:324–333

  • Oliveros, JC (2007) VENNY. An interactive tool for comparing lists with Venn Diagrams. http://bioinfogp.cnb.csic.es/tools/venny/index.html.

  • Rahman H (2011) Vision 2030- project directorate on animal disease monitoring and surveillance, ICAR Hebbal, Bengaluru. Karnataka 2

  • Reimand J, Arak T, Vilo J (2011) G:profiler—a web server for functional interpretation of gene lists. Nucleic Acids Res 39:307–315

    Article  Google Scholar 

  • Risatti GR, Callahan JD, Nelson WM, Borca MV (2003) Rapid detection of classical swine fever virus by a portable real-time reverse transcriptase PCR assay. J Clin Microbiol 41(1):500–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11:R25

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Cordon PJ, Nunez A, Salguero FJ, Carrasco L, Gomez-Villamandos JC (2005) Evolution of T lymphocytes and cytokine expression in classical swine fever (CSF) virus infection. J Comp Pathol 132:249–260

    Article  CAS  PubMed  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi FD, Van Kaer L (2006) Reciprocal regulation between natural killer cells and autoreactive T cells. Nat Rev Immunol 6:751–760

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Zhu J, Luo J, Cao W, Shi H, Yao D, Li J, Sun Y, Xu H, Yu K, Loor JJ (2015) Genes regulating lipid and protein metabolism are highly expressed in mammary gland of lactating dairy goats. Funct Integr Genomics 15:309. doi:10.1007/s10142-014-0420-1

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Kumar A, Sahoo NR, Upmanyu V, Kumar B, Bhushan B, Sharma D (2016) Association of humoral response to classical swine fever vaccination with single nucleotide polymorphisms of swine leukocyte antigens. J Appl Anim Res 32:187–190

    Google Scholar 

  • Stark C, Breitkreutz BJ, Chatr-Aryamontri A, Boucher L, Oughtred R, Livstone MS, Nixon J, Van Auken K, Wang X, Shi X, Reguly T, Rust JM, Winter A, Dolinski K, Tyers M (2011) The BioGRID interaction database: 2011 update. Nucleic Acids Res 39:698–704

    Article  Google Scholar 

  • Summerfield A, Ruggli N (2015) Immune responses against classical swine fever virus: between ignorance and lunacy. Front Vet Sci doi: 103389/fvets201500010

  • Sun YK, Zhang XM, Du M, Li YX, Pan HB, Yan YL, Yang YA (2014) Atypical classical swine fever infection changes interleukin Gene expression in pigs. Isr J Vet Med 69(4):221–227

    Google Scholar 

  • Suradhat S, Intrakamhaeng M, Damrongwatanapokin S (2001) The correlation of virus-specific interferon-gamma production and protection against classical swine fever virus infection. Vet Immunol Immunopathol 83:177–189

    Article  CAS  PubMed  Google Scholar 

  • Suthram S, Shlomi T, Ruppin E, Sharan R, Ideker T (2006) A direct comparison of protein interaction confidence assignment schemes. BMC Bioinformatics 7:360

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamura T, Nagashima N, Ruggli N, Summerfield A, Kida H, Sakoda Y (2014) Npro of classical swine fever virus contributes to pathogenicity in pigs by preventing type I interferon induction at local replication sites. Vet Res 17:45–47

    Google Scholar 

  • Van Oirschot JT (2003) Vaccinology of classical swine fever: from lab to field. Vet Microbiol 96:367–384

    Article  CAS  PubMed  Google Scholar 

  • Vogan K (2013) PIK3CD mutation cause immunodeficiency. Nat. Genetics 45:1417. doi:10.1038/ng.2840

    CAS  Google Scholar 

  • Zaffuto KM, Piccone ME, Burrage TG, Balinsky CA, Risatti GR, Borca MV, Holinka LG, Rock DL, Afonso CL (2007) Classical swine fever virus inhibits nitric oxide production in infected macrophages. J Gen Virol 88:3007–3012

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the ICAR-IVRI and CABIN project of IASRI for providing financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amit Kumar or Ravi Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathak, S.K., Kumar, A., Bhuwana, G. et al. RNA Seq analysis for transcriptome profiling in response to classical swine fever vaccination in indigenous and crossbred pigs. Funct Integr Genomics 17, 607–620 (2017). https://doi.org/10.1007/s10142-017-0558-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-017-0558-8

Keywords

Navigation