Skip to main content

Advertisement

Log in

Influence of mosquito genotype on transcriptional response to dengue virus infection

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

The mosquito Aedes aegypti is the principal vector that transmits dengue virus (DENV) to humans. The primary factors that trigger a susceptible or refractory interaction of A. aegypti with DENV are not well understood. In this study, our aim is to characterize the influence of vector genotype on differential gene expression of susceptible vs. refractory A. aegypti strains to DENV infection. To accomplish that, we identified differential expression of a set of complementary DNAs (cDNAs; n = 9,504) of the D2S3 (susceptible) and Moyo-D (refractory) strains of A. aegypti to DENV serotype 2 (JAM1409) and compared these results to the differential expression of cDNAs in a different susceptible vector genotype (Moyo-S) relative to the same refractory genotype (Moyo-D) identified from our previous study. We observed that, although the number of differentially expressed transcripts (DETs) was similar in both the studies, about ~95 % of the DETs were distinct between Moyo-D/D2S3 vs. Moyo-D/Moyo-S. This suggested that A. aegypti response, to infection of a given genotype of dengue, is largely dependent upon the vector genotype. However, we observed a set of common DETs among the vector strains that were associated with predicted functions such as endocytosis, regulation of autophagy, peroxisome, and lipid metabolism that may be relatively universal in conferring mosquito response to DENV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Behura SK, Severson DW (2012) Intrinsic features of Aedes aegypti genes affect transcriptional responsiveness of mosquito genes to dengue virus infection. Infect Genet Evol 12:1413–1418

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Behura SK, Gomez-Machorro C, Harker BW, deBruyn B, Lovin DD, Hemme RR, Mori A, Romero-Severson J, Severson DW (2011) Global cross-talk of genes of the mosquito Aedes aegypti in response to dengue virus infection. PLoS Negl Trop Dis 5:e1385

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bennett KE, Olson KE, Muñoz Mde L, Fernandez-Salas I, Farfan-Ale JA, Higgs S, Black WC 4th, Beaty BJ (2002) Variation in vector competence for dengue 2 virus among 24 collections of Aedes aegypti from Mexico and the United States. Am J Trop Med Hyg 67:85–92

    PubMed  Google Scholar 

  • Bennett KE, Beaty BJ, Black WC 4th (2005) Selection of D2S3, an Aedes aegypti (Diptera: Culicidae) strain with high oral susceptibility to dengue 2 virus and D2MEB, a strain with a midgut barrier to Dengue 2 escape. J Med Entomol 42:110–119

    Article  PubMed  Google Scholar 

  • Bosio CF, Beaty BJ, Black WC 4th (1998) Quantitative genetics of vector competence for dengue-2 virus in Aedes aegypti. Am J Trop Med Hyg 59:965–970

    CAS  PubMed  Google Scholar 

  • Bosio CF, Fulton RE, Salasek ML, Beaty BJ, Black WC 4th (2000) Quantitative trait loci that control vector competence for dengue-2 virus in the mosquito Aedes aegypti. Genetics 156:687–698

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brackney DE, Foy BD, Olson KE (2008) The effects of midgut serine proteases on dengue virus type 2 infectivity of Aedes aegypti. Am J Trop Med Hyg 79:267–274

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chauhan C, Behura SK, Debruyn B, Lovin DD, Harker BW, Gomez-Machorro C, Mori A, Romero-Severson J, Severson DW (2012) Comparative expression profiles of midgut genes in dengue virus refractory and susceptible Aedes aegypti across critical period for virus infection. PLoS One 7:e47350

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clemons AC, Mori A, Haugen M, Severson D, Duman-Scheel M (2010) Aedes aegypti: culturing and egg collection. Cold Spring Harbor Protoc 2010:pdb.prot5507

  • Colpitts TM, Cox J, Vanlandingham DL, Feitosa FM, Cheng G, Kurscheid S, Wang P, Krishnan MN, Higgs S, Fikrig E (2011) Alterations in the Aedes aegypti transcriptome during infection with West Nile, dengue and yellow fever viruses. PLoS Pathog 7:e1002189

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • de Hoon MJL, Imoto S, Nolan J, Miyano S (2004) Open source clustering software. Bioinformatics 20:1453–1454

    Article  PubMed  Google Scholar 

  • Diallo M, Ba Y, Faye O, Soumare ML, Dia I, Sall AA (2008) Vector competence of Aedes aegypti populations from Senegal for sylvatic and epidemic dengue 2 virus isolated in West Africa. Trans R Soc Trop Med Hyg 102:493–498

    Article  PubMed  Google Scholar 

  • Fury W, Batliwalla F, Gregersen PK, Li W (2006) Overlapping probabilities of top ranking gene lists, hypergeometric distribution, and stringency of gene selection criterion. Conf Proc IEEE Eng Med Biol Soc 1:5531–5534

    Article  PubMed  Google Scholar 

  • Gomez-Machorro C, Bennett KE, del Lourdes Munoz M, Black WC 4th (2004) Quantitative trait loci affecting dengue midgut infection barriers in an advanced intercross line of Aedes aegypti. Insect Mol Biol 13:637–648

    Article  CAS  PubMed  Google Scholar 

  • Gubler DJ, Nalim S, Tan R, Saipan H, Saroso JS (1979) Variation in susceptibility to oral infection with dengue viruses among geographic strains of Aedes aegypti. Am J Trop Med Hyg 28:1045–1052

    CAS  PubMed  Google Scholar 

  • Guzman MG, Halstead SB, Artsob H, Buchy P, Farrar J, Gubler DJ, Hunsperger E, Kroeger A, Margolis HS, Martínez E, Nathan MB, Pelegrino JL, Simmons C, Yoksan S, Peeling RW (2010) Dengue: a continuing global threat. Nat Rev Microbiol 8(Suppl 12):7–16

    Article  Google Scholar 

  • Holmes EC (2003) Patterns of intra- and interhost nonsynonymous variation reveal strong purifying selection in dengue virus. J Virol 77:11296–11308

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hsieh SC, Liu IJ, King CC, Chang GJ, Wang WK (2008) A strong endoplasmic reticulum retention signal in the stem-anchor region of envelope glycoprotein of dengue virus type 2 affects the production of virus-like particles. Virology 374:338–350

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Behura SK, Clem RJ, Schneemann A, Becnel J, Severson DW, Zhou L (2013) P53-mediated rapid induction of apoptosis conveys resistance to viral infection in insects. PLoS Pathog 9:e1003137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mercado-Curiel RF, Black WC 4th, Muñoz M de L (2008) A dengue receptor as possible genetic marker of vector competence in Aedes aegypti. BMC Microbiol 8:118

  • Molina-Cruz A, Gupta L, Richardson J, Bennett K, Black W 4th, Barillas-Mury C (2005) Effect of mosquito midgut trypsin activity on dengue-2 virus infection and dissemination in Aedes aegypti. Am J Trop Med Hyg 72:631–637

    PubMed  Google Scholar 

  • Mosso C, Galván-Mendoza IJ, Ludert JE, del Angel RM (2008) Endocytic pathway followed by dengue virus to infect the mosquito cell line C6/36 HT. Virology 378:193–199

    Article  CAS  PubMed  Google Scholar 

  • Nene V, Wortman JR, Lawson D, et al (2007) Genome sequence of Aedes aegypti, a major arbovirus vector. Science 316:1718–1723

  • Phillips ML (2008) Dengue reborn: widespread resurgence of a resilient vector. Environ Health Perspect 116:382–389

    Article  Google Scholar 

  • Rico-Hesse R (2007) Dengue virus evolution and virulence models. Clin Infect Dis 44:1462–1466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rosen L, Roseboom LE, Gubler DJ, Lein JC, Chaniotis BN (1985) Comparative susceptibility of mosquito species and strains to oral and parenteral infection with dengue and Japanese encephalitis viruses. Am J Trop Med Hyg 34:603–615

    CAS  PubMed  Google Scholar 

  • Rutledge LC, Ward RA, Gould DJ (1964) Studies on the feeding response of mosquitoes to nutritive solutions in a new membrane feeder. Mosq News 24:407–419

  • Schneider JR, Mori A, Romero-Severson J, Chadee DD, Severson DW (2007) Investigations of dengue-2 susceptibility and body size among Aedes aegypti populations. Med Vet Entomol 21:370–376

    Article  CAS  PubMed  Google Scholar 

  • Sessions OM, Barrows NJ, Souza-Neto JA, Robinson TJ, Hershey CL, Rodgers MA, Ramirez JL, Dimopoulos G, Yang PL, Pearson JL, Garcia-Blanco MA (2009) Discovery of insect and human dengue virus host factors. Nature 458:1047–10450

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Severson DW, Behura SK (2012) Mosquito genomics: progress and challenges. Annu Rev Entomol 57:143–166

    Article  CAS  PubMed  Google Scholar 

  • Souza-Neto JA, Sim S, Dimopoulos G (2009) An evolutionary conserved function of the JAK-STAT pathway in anti-dengue defense. Proc Natl Acad Sci U S A 106:17841–17846

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thathy V, Severson DW, Christensen BM (1994) Reinterpretation of the genetics of susceptibility of Aedes aegypti to Plasmodium gallinaceum. J Parasitol 80:705–712

    Article  CAS  PubMed  Google Scholar 

  • Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98:5116–5121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vasilakis N, Deardorff ER, Kenney JL, Rossi S, Hanley K, Weaver S (2009) Mosquitoes put the brake on arbovirus evolution: experimental evolution reveals slower mutation accumulation in mosquito than vertebrate cells. PLoS Pathog 5:1–18

    Article  Google Scholar 

  • WHO (2009) Dengue guidelines for diagnosis, treatment, prevention and control, 3rd edn. World Health Organization, Geneva

    Google Scholar 

  • Xi Z, Ramirez JL, Dimopoulos G (2008) The Aedes aegypti Toll pathway controls dengue virus infection. PLoS Pathog 4:e1000098

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by grant RO1-AI059342 from the National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIAID/NIH), USA.

Ethical standards

This study was performed in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The animal use protocol was approved by the University of Notre Dame Institutional Animal Care and Use Committee (study no. 11-036).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Severson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 618 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behura, S.K., Gomez-Machorro, C., deBruyn, B. et al. Influence of mosquito genotype on transcriptional response to dengue virus infection. Funct Integr Genomics 14, 581–589 (2014). https://doi.org/10.1007/s10142-014-0376-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-014-0376-1

Keywords

Navigation