Skip to main content
Log in

The barley UNICULM2 gene resides in a centromeric region and may be associated with signaling and stress responses

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Vegetative axillary meristem (AXM) activity results in the production of branches. In barley (Hordeum vulgare L.), vegetative AXM develop in the crown and give rise to modified branches, referred to as tillers. Mutations in the barley low-tillering mutant uniculm2 block vegetative AXM development and prevent tiller development. The objectives of this work were to examine gene expression in wild-type and cul2 mutant plants, fine map the CUL2 gene, and to examine synteny in the CUL2 region in barley with rice. RNA profiling experiments using two near-isogenic line pairs carrying either the cul2 mutant allele or wild-type CUL2 allele in different genetic backgrounds detected 28 unique gene transcripts exhibiting similar patterns of differential accumulation in both genetic backgrounds, indicating that we have identified key genes impacted by the CUL2 gene. Twenty-four genes had higher abundance in uniculm2 mutant tissues, and nearly half of the annotated genes likely function in stress-response or signal transduction pathways. Genetic mapping identified five co-segregating markers in 1,088 F2 individuals. These markers spanned the centromere region on chromosome 6H, and coincided with a 50-cM region on rice chromosome 2, indicating that it may be difficult to positionally clone CUL2. Taken together, the results revealed stress response and signal transduction pathways that are associated with the CUL2 gene, isolating CUL2 via positional cloning approaches that may be difficult, and the remnants of barley–rice synteny in the CUL2 region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Babb S, Muehlbauer GJ (2003) Genetic and morphological characterization of the barley uniculm2 (cul2) mutant. Theor Appl Genet 106:846–857

    PubMed  CAS  Google Scholar 

  • Beveridge CA, Mathesius U, Rose RJ, Gresshoff PM (2007) Common regulatory themes in meristem development and whole-plant homeostasis. Curr Opin Plant Biol 10:44–51

    Article  PubMed  CAS  Google Scholar 

  • Boddu J, Cho S, Kruger WM, Muehlbauer GJ (2006) Transcriptome analysis of the barley–Fusarium graminearum interaction. Mol Plant Microbe Interact 19:407–417

    Article  PubMed  CAS  Google Scholar 

  • Cho S, Garvin DF, Muehlbauer GJ (2006) Transcriptome analysis and physical mapping of barley genes in wheat–barley chromosome addition lines. Genetics 172:1277–1285

    Article  PubMed  Google Scholar 

  • Close TJ, Wanamaker SI, Caldo RA, Turner SM, Ashlock DA, Dickerson JA, Wing RA, Muehlbauer GJ, Kleinhofs A, Wise RP (2004) A new resource for cereal genomics: 22 K barley GeneChip comes of age. Plant Physiol 134:960–968

    Article  PubMed  CAS  Google Scholar 

  • Close TJ, Bhat PR, Lonardi S, Wu Y, Rostoks N, Ramsay L, Druka A, Stein N, Svensson JT, Wanamaker S et al (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics 10:582

    Article  PubMed  Google Scholar 

  • Dabbert T, Okagaki RJ, Cho S, Boddu J, Muehlbauer GJ (2009) The genetics of barley low-tillering mutants: absent lower laterals (als). Theor Appl Genet 118:1351–1360

    Article  PubMed  CAS  Google Scholar 

  • Dabbert T, Okagaki RJ, Cho S, Heinen S, Boddu J, Muehlbauer GJ (2010) The genetics of barley low-tillering mutants: low number of tillers-1 (lnt1). Theor Appl Genet 121:705–717

    Article  PubMed  CAS  Google Scholar 

  • Domagalska MA, Leyser (2011) Signal integration in the control of shoot branching. Nat Rev Mol Cell Biol 12:211–221

    Article  PubMed  CAS  Google Scholar 

  • Druka A, Franckowiak J, Lundqvist U, Bonar N, Alexander J, Houston K, Radovic S, Shahinnia F, Vendramin V, Morgante M, Stein N, Waugh R (2011) Genetic dissection of barley morphology and development. Plant Physiol 155:617–627

    Article  PubMed  CAS  Google Scholar 

  • Durbak A, Yao H, McSteen P (2012) Hormone signaling in plant development. Curr Opin Plant Biol 15:92–96

    Article  PubMed  CAS  Google Scholar 

  • Dworkin I, Kennerly E, Tack D, Hutchinson J, Brown J, Mahaffey J, Gibson G (2009) Genomic consequences of background effects on scalloped mutant expressivity in the wing of Drosophila melanogaster. Genetics 181:1065–1076

    Article  PubMed  CAS  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379

    Article  PubMed  CAS  Google Scholar 

  • Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264

    Article  PubMed  Google Scholar 

  • Islam AKMR, Shepherd KW (1990) Incorporation of barley chromosomes in wheat. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 13. Springer, Berlin, pp 128–151

    Google Scholar 

  • Jia H, Nettleton D, Peterson JM, Vazquez-Carrillo G, Jannink J-L, Scott MP (2007) Comparison of transcript profiles in wild-type and o2 maize endosperm in different genetic backgrounds. Plant Genome 47:S45–S59

    Google Scholar 

  • Künzel G, Korzun L, Meister A (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154:397–412

    PubMed  Google Scholar 

  • Li X, Qian Q, Fu Z, Wong Y, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J (2003) Control of tillering in rice. Nature 422:618–621

    Article  PubMed  CAS  Google Scholar 

  • Lundqvist U, Franckowiak J, Konishi T (1997) New and revised descriptions of barley genes. Barley Genetics Newsletter 26:22

    Google Scholar 

  • Mayer FX, Martis M, Hedley PE, Simková H, Liu H, Morris JA, Steuernagel B, Taudien S, Roessner S, Gundlach H et al (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23:1249–1263

    Article  PubMed  CAS  Google Scholar 

  • McSteen P (2009) Hormonal regulation of branching in grasses. Plant Physiol 149:46–55

    Article  PubMed  CAS  Google Scholar 

  • McSteen P, Leyser O (2005) Shoot branching. Ann Rev Plant Biol 56:353–374

    Article  CAS  Google Scholar 

  • Muñoz-Amatriaín M, Moscou MJ, Bhat PR, Svensson JT, Bartoš J, Suchánková P, Šimková H, Endo TR, Fenton RD, Lonardi S et al (2011) An improved consensus linkage map of barley based on flow-sorted chromosomes and SNP markers. Plant Genome 4:238–249

    Article  Google Scholar 

  • Odland W, Baumgarten A, Phillips R (2006) Ancestral rice blocks define multiple related regions in the maize genome. Plant Genome 1:S41–S48

    Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana, Totowa, NJ, pp 365–386

    Google Scholar 

  • Sato K, Nankaku N, Takeda K (2009) A high-density transcript linkage map of barley derived from a single population. Heredity 103:110–117

    Article  PubMed  CAS  Google Scholar 

  • Schmitz G, Theres K (2005) Shoot and inflorescence branching. Curr Opin Plant Biol 8:506–511

    Article  PubMed  CAS  Google Scholar 

  • Shahinnia F, Druka A, Franckowiak J, Morgante M, Waugh R, Stein N (2012) High resolution mapping of Dense spike-ar (dsp.ar) to the genetic centromere of barley chromosome 7H. Theor Appl Genet 124:373–384

    Article  PubMed  Google Scholar 

  • Shands RG (1963) Inheritance and linkage of orange lemma and uniculm characters. Barley Genet Newslett 6:35–36

    Google Scholar 

  • The International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    Article  Google Scholar 

  • Thiel T, Graner A, Waugh R, Grosse I, Close TJ, Stein N (2009) Evidence and evolutionary analysis of ancient whole-genome duplication in barley predating the divergence from rice. BMC Evol Biol 9:209

    Article  PubMed  Google Scholar 

  • Throude M, Bolot S, Bosio M, Pont C, Sarda X, Quraishi UM, Bourgis F, Lessard P, Rogowsky P, Ghesquiere A, Murigneux A, Charmet G, Perez P, Salse J (2008) Structure and expression analysis of rice paleo duplications. Nucl Acids Res 37:1248–1259

    Article  Google Scholar 

  • van Leeuwen H, Kliebenstein DJ, West MAL, Kim K, van Poecke R, Katagiri F, Michelmore RW, Doerge RW, St. Clair DA (2007) Natural variation among Arabidopsis thaliana accessions for transcriptome response to exogenous salicylic acid. Plant Cell 19:2099–2110

    Article  PubMed  Google Scholar 

  • Van Ooijen JW (2006) JoinMap® 4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma, Wageningen

    Google Scholar 

  • Xu WW, Cho S, Yang SS, Bolon Y-T, Bilgic H, Jia H, Xiong Y, Muehlbauer GJ (2009) Single-feature polymorphism discovery by computing probe affinity shape powers. BMC Genet 10:48

    Article  PubMed  Google Scholar 

  • Yan H, Talbert PB, Lee HR, Jett J, Henikoff S, Chen F, Jiang J (2008) Intergenic locations of rice centromeric chromatin. PLoS Biol 6:e286

    Article  PubMed  Google Scholar 

  • Zhang Z-B, Yang G, Arana F, Chen Z, Li Y, Xia H-Y (2007) Arabidopsis inositol polyphosphate 6-/3-kinase (AtIpk2β) is involved in axillary shoot branching via auxin signaling. Plant Physiol 144:942–951

    Article  PubMed  CAS  Google Scholar 

  • Zhou D, Zhou X, Ling Y, Zhang Z, Su Z (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucl Acids Res 38:W64–W70

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank J. Franckowiak, Department of Plant Sciences, North Dakota State University, Fargo, ND, for generously providing us seed for Bowman cultivar, and D. Rasmusson, Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, for seed for the Morex and Steptoe cultivars. Morex-cul2 was provided to us by Steve Dofing at Washington State University, Pullman, WA; Bowman-cul2 and cul2-rob1 were obtained from the USDA–ARS National Small Grain Germplasm Research Facility, Aberdeen, ID. Maria Muñoz-Amatriaín, Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, generously provided us with the updated barley SNP map data prior to publication. The University of Minnesota Supercomputing Institute for Advanced Computational Research provided computational resources, and GeneChip hybridizations were performed at the University of Minnesota BioMedical Genomics Center. This research was supported by a grant from the United States Department of Agriculture CSREES–NRI Plant Growth and Development program grant #2004-03440 to GJM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary J. Muehlbauer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Hierarchical clustering analysis of transcript patterns. Abundance patterns for individual samples from the different tissue types in wild-type barley and the cul2 mutant: a Morex and Morex-cul2, b Bowman and Bowman-cul2 (JPEG 92 kb)

High-resolution image file (TIFF 130 kb)

Fig. S2

GO analysis of transcripts up-regulated in Bowman-cul2 versus Bowman. Up-regulated GO transcript categories that were over-represented in Bowman-cul2 versus Bowman were identified using the Singular Enrichment Analysis tool at AgriGO (http://www.bioinfo.cau.edu.cn/agriGO/. This figure does not include GO categories relating to cellular localization (JPEG 56 kb)

High-resolution image file (TIFF 160 kb)

Fig. S3

GO analysis of transcripts up-regulated in Morex-cul2 versus Morex. Up-regulated GO transcript categories that were over-represented in Morex-cul2 versus Morex were identified using the Singular Enrichment Analysis tool at AgriGO (http://www.bioinfo.cau.edu.cn/agriGO/(JPEG 57 kb)

High-resolution image file (TIFF 183 kb)

Table 1

Markers used for mapping (DOC 80 kb)

Table 2

Correlation coefficients of transcript abundance in four tissues (DOC 62 kb)

Table 3

Transcripts with at least 2-fold accumulation differences in mutant cul2 tissue compared to wild-type in the Morex background (XLS 280 kb)

Table 4

Transcripts with at least 2-fold accumulation differences in mutant cul2 tissue compared to wild-type in the Bowman background(XLS 302 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okagaki, R.J., Cho, S., Kruger, W.M. et al. The barley UNICULM2 gene resides in a centromeric region and may be associated with signaling and stress responses. Funct Integr Genomics 13, 33–41 (2013). https://doi.org/10.1007/s10142-012-0299-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-012-0299-7

Keywords

Navigation