Skip to main content

Advertisement

Log in

Purification, Biochemical Characterization, and Amino Acid Sequence of a Novel Type of Lectin from Aplysia dactylomela Eggs with Antibacterial/Antibiofilm Potential

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

A new lectin from Aplysia dactylomela eggs (ADEL) was isolated by affinity chromatography on HCl-activated Sepharose™ media. Hemagglutination caused by ADEL was inhibited by several galactosides, mainly galacturonic acid (Ka = 6.05 × 106 M−1). The primary structure of ADEL consists of 217 residues, including 11 half-cystines involved in five intrachain and one interchain disulfide bond, resulting in a molecular mass of 57,228 ± 2 Da, as determined by matrix-assisted laser desorption/ionization time of flight mass spectrometry. ADEL showed high similarity with lectins isolated from Aplysia eggs, but not with other known lectins, indicating that these lectins could be grouped into a new family of animal lectins. Three glycosylation sites were found in its polypeptide backbone. Data from peptide-N-glycosidase F digestion and MS suggest that all oligosaccharides attached to ADEL are high in mannose. The secondary structure of ADEL is predominantly β-sheet, and its tertiary structure is sensitive to the presence of ligands, as observed by CD. A 3D structure model of ADEL was created and shows two domains connected by a short loop. Domain A is composed of a flat three-stranded and a curved five-stranded β-sheet, while domain B presents a flat three-stranded and a curved four-stranded β-sheet. Molecular docking revealed favorable binding energies for interactions between lectin and galacturonic acid, lactose, galactosamine, and galactose. Moreover, ADEL was able to agglutinate and inhibit biofilm formation of Staphylococcus aureus, suggesting that this lectin may be a potential alternative to conventional use of antimicrobial agents in the treatment of infections caused by Staphylococcal biofilms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alpuche J, Pereyra A, Mendoza-Hernández G, Agundis C, Rosas C, Zenteno E (2010) Purification and partial characterization of an agglutinin from Octopus maya serum. Comp Biochem Physiol B 156:1–5

    Article  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quatitation of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal Biochem 72:248–534

    Article  CAS  PubMed  Google Scholar 

  • Bulgakov A, Park KI, Choi KS, Lim HK, Cho M (2004) Purification and characterisation of a lectin isolated from the Manila clam Ruditapes philippinarum in Korea. Fish Shellfish Immunol 16:487–499

    Article  CAS  PubMed  Google Scholar 

  • Carneiro RF, Melo AA, Almeida AS, Moura RM, Chaves RP, Sousa BL, Nascimento KS, Sampaio SS, Lima JP, Cavada BS, Nagano CS, Sampaio AH (2013) H-3, a new lectin from the marine sponge Haliclona caerulea: purification and mass spectrometric characterization. Int J Biochem Cell Biol 45:2864–2873

    Article  CAS  PubMed  Google Scholar 

  • Carneiro RF, Teixeira CS, Melo AA, Almeida AS, Cavada BS, Sousa OV, Rocha BAM, Nagano CS, Sampaio AH (2015) L-rhamnose-binding lectin from eggs of the Echinometra lucunter: amino acid sequence and molecular modeling. Int J Biol Macromol 78:180–188

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Xiao S, Yu Z (2011) F-type lectin involved in defense against bacterial infection in the pearl oyster (Pinctada martensii). Fish Shellfish Immunol 30:750–754

    Article  CAS  PubMed  Google Scholar 

  • Cheung RC, Wong JH, Pan W, Chan YS, Yin C, Dan X, Ng TB (2015) Marine lectins and their medicinal applications. Appl Microbiol Biotechnol 99:3755–3773

    Article  CAS  PubMed  Google Scholar 

  • Davis IW, Murray LW, Richardson JS, Richardson DC (2004) MOLPROBITY: structure validation and all-atom contact analysis for nucleic acids and their complexes. Nucleic Acids Res 32:615–619

    Article  Google Scholar 

  • Ding S, Li Y, Shi Z, Yan S (2014) A protein structural classes prediction method based on predicted secondary structure and PSI-BLAST profile. Biochimie 97:60–65

  • Ferre F, Clote P (2005) DiANNA: a web server for disulfide connectivity prediction. Nucleic Acids Res 33:230–232

    Article  Google Scholar 

  • Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    CAS  PubMed  Google Scholar 

  • Fujii Y, Kawsar SM, Matsumoto R, Yasumitsu H, Ishizaki N, Dogasaki C, Hosono M, Nitta K, Hamako J, Taei M, Ozeki Y (2011) A D-galactose-binding lectin purified from coronate moon turban, turbo (Lunella) coreensis, with a unique amino acid sequence and the ability to recognize lacto-series glycosphingolipids. Comp Biochem Physiol C 158:30–37

    Article  Google Scholar 

  • Fujii Y, Dohmae N, Takio K, Kawsar SM, Matsumoto R, Hasan I, Koide Y, Kanaly RA, Yasumitsu H, Ogawa Y, Sugawara S, Hosono M, Nitta K, Hamako J, Matsui T, Ozeki Y (2012) A lectin from the mussel Mytilus galloprovincialis has a highly novel primary structure and induces glycan-mediated cytotoxicity of globotriaosylceramide-expressing lymphoma cells. J Biol Chem 287:44772–44783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasparini F, Franchi N, Spolaore B, Ballarin L (2008) Novel rhamnose-binding lectins from the colonial ascidian Botryllus schlosseri. Dev Comp Immunol 32:1177–1191

    Article  CAS  PubMed  Google Scholar 

  • Ghazarian H, Idoni B, Oppenheimer SB (2011) A glycobiology review: carbohydrates, lectins and implications in cancer therapeutics. Acta Histochem 113:236–247

    Article  CAS  PubMed  Google Scholar 

  • Gilboa-Garber N, Sudakevitz D (2001) Usage of Aplysia lectin interactions with T antigen and poly-N-acetyllactosamine for screening of E. coli strains which bear glycoforms cross-reacting with cancer-associated antigens. FEMS Immunol Med Microbiol 30:235–240

  • Gilboa-Garber N, Susswein AJ, Mizrahi L, Avichezer D (1985) Purification and characterization of the gonad lectin of Aplysia depilans. FEBS Lett 181:267–270

    Article  CAS  PubMed  Google Scholar 

  • Greenfield NJ (2006) Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nat Protoc 1:2527–2535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenfield NJ (2007) Determination of the folding of proteins as a function of denaturants, osmolytes or ligands using circular dichroism. Nat Protoc 1:2733–2741

    Article  Google Scholar 

  • He X, Zhang Y, Yu F, Yu Z (2011) A novel sialic acid binding lectin with anti-bacterial activity from the Hong Kong oyster (Crassostrea hongkongensis). Fish Shellfish Immunol 31:1247–1250

    Article  CAS  PubMed  Google Scholar 

  • Hirabayashi J, Dutta SK, Kasai KI (1998) Novel galactose-binding proteins in Annelida: characterization of 29-kDa tandem repeat-type lectins from the earthworm Lumbricus terrestris. J Biol Chem 273:14450–14460

    Article  CAS  PubMed  Google Scholar 

  • Ito S, Shimizu M, Nagatsuka M, Kitajima S, Honda M, Tsuchiya T, Kanzawa N (2011) High molecular weight lectin isolated from the mucus of the giant African snail Achatina fulica. Biosci Biotechnol Biochem 75:20–25

    Article  CAS  PubMed  Google Scholar 

  • Jimbo M, Yanohara T, Koike K, Koike K, Sakai R, Muramoto K, Kamiya H (2000) The D-galactose-binding lectin of the octocoral Sinularia lochmodes: characterization and possible relationship to the symbiotic dinoflagellates. Comp Biochem Physiol B 125:227–236

    Article  CAS  PubMed  Google Scholar 

  • Kawsar SMA, Matsumoto R, Fujii Y, Yasumitsu H, Dogasaki C, Hosono M, Nitta K, Hamako J, Matsui T, Kojima N, Ozeki Y (2009) Purification and biochemical characterization of a D-galactose binding lectin from Japanese sea hare (Aplysia kurodai) eggs. Biochemistry (Mosc) 74:709–716

    Article  CAS  Google Scholar 

  • Kawsar SMA, Matsumoto R, Fujii Y, Matsuoka H, Masuda N, Chihiro I, Yasumitsu H, Kanaly RA, Sugawara S, Hosono M, Nitta K, Ishizaki N, Dogasaki C, Hamako J, Matsui T, Ozeki Y (2011) Cytotoxicity and glycan-binding profile of a D-galactose-binding lectin from the eggs of a Japanese sea hare (Aplysia kurodai). Protein J 30:509–519

    Article  CAS  PubMed  Google Scholar 

  • Kukuruzinska MA, Lennon K (1998) Protein N-glycosylation: molecular genetics and functional significance. Crit Rev Oral Biol Med 9:415–448

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature 227:680–683

    Article  CAS  PubMed  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  • Liljemark WF, Bloomquist CG, Germaine GR (1981) Effect of bacterial aggregation on the adherence of oral streptococci to hydroxyapatite. Infect Immun 31:935–941

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matthews-Cascon H, Rocha-Barreira CA, Meirelles CAO (2011) Egg masses of some Brazilian mollusk. Expressão Gráfica e Editora, Fortaleza

    Google Scholar 

  • Melo VMM, Duarte ABG, Carvalho AFFU, Siebra EA, Vasconcelos IM (2000) Purification of a novel antibacterial and haemagglutinating protein from the purple gland of the sea hare, Aplysia dactylomela rang, 1828. Toxicon 38:1415–1427

    Article  CAS  PubMed  Google Scholar 

  • Melo AA, Carneiro RF, Melo WS, Moura RM, Silva GC, Sousa OV, Saboya JPS, Nascimento KS, Saker-Sampaio S, Nagano CS, Cavada BS, Sampaio AH (2014) HGA-2, a novel galactoside-binding lectin from the sea cucumber Holothuria grisea binds to bacterial cells. Int J Biol Macromol 64:435–442

    Article  PubMed  Google Scholar 

  • Morris G, Huey H (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moura RM, Queiroz AFS, Fook JMSLL, Dias ASF, Monteiro NKV, Ribeiro JKC, Moura GE, Macedo LL, Santos EA, Sales MP (2006) CvL, a lectin from the marine sponge Cliona varians: isolation, characterization and its effects on pathogenic bacteria and Leishmania promastigotes. Comp Biochem Physiol B 145:517–523

    Article  Google Scholar 

  • Mu C, Chen L, Zhao J, Wang C (2014) Molecular cloning and expression of a C-type lectin gene from Venerupis philippinarum. Mol Biol Rep 41:139–144

    Article  CAS  PubMed  Google Scholar 

  • Naganuma T, Ogawa T, Hirabayashi J, Kasai K, Kamiya H, Muramoto K (2006) Isolation, characterization and molecular evolution of a novel pearl shell lectin from a marine bivalve, Pteria penguin. Mol Divers 10:607–618

    Article  CAS  PubMed  Google Scholar 

  • Pales-Espinosa E, Perrigault M, Allam B (2010) Identification and molecular characterization of a mucosal lectin (MeML) from the blue mussel Mytilus edulis and its potential role in particle capture. Comp Biochem Physiol A Mol Integr Physiol 156:495–501

    Article  PubMed  Google Scholar 

  • Roué M, Quévrain E, Domart-Coulon I, Bourguet-Kondracki ML (2012) Assessing calcareous sponges and their associated bacteria for the discovery of new bioactive natural products. Nat Prod Rep 29:739–751

    Article  PubMed  Google Scholar 

  • Sampaio AH, Rogers DJ, Barwell CJ (1998) A galactose-specific lectin from the red marine alga Ptilota filicina. Phytochemistry 48:765–769

    Article  CAS  PubMed  Google Scholar 

  • Shen M, Sali A (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci 15:2507–2524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860

    Article  CAS  PubMed  Google Scholar 

  • Slomiany DL, Meyer K (1972) Isolation and structural studies of sulphated glycoproteins of hog gastric mucin. J Biol Chem 247:5062–5070

    CAS  PubMed  Google Scholar 

  • Song X, Zhang H, Wang L, Zhao J, Mu C, Song L, Qiu L, Liu X (2011) A galectin with quadruple-domain from bay scallop Argopecten irradians is involved in innate immune response. Dev Comp Immunol 35:592–602

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Wang L, Wang B, Guo Z, Liu M, Jiang K, Luo Z (2007) Purification and characterisation of a natural lectin from the serum of the shrimp Litopenaeus vannamei. Fish Shellfish Immunol 23:292–299

    Article  CAS  PubMed  Google Scholar 

  • Takahashi KG, Kuroda T, Muroga K (2008) Purification and antibacterial characterization of a novel isoform of the Manila clam lectin (MCL-4) from the plasma of the Manila clam, Ruditapes philippinarum. Comp Biochem Physiol B Biochem Mol Biol 150:45–52

    Article  PubMed  Google Scholar 

  • Trott O, Olson AJ (2009) Software news and update Autodock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    Google Scholar 

  • Uchida T, Yamasaki T, Eto S, Sugawara H, Kurisu G, Nakagawa A, Kusunoki M, Hatakeyama T (2004) Crystal structure of the hemolytic lectin CEL-III isolated from the marine invertebrate Cucumaria echinata: implications of domain structure for its membrane pore-formation mechanism. J Biol Chem 135:37133–37141

    Article  Google Scholar 

  • Van Stokkum IHM, Spoelder HJW, Bloemendal M, Van Grondelle R, Groen FCA (1990) Estimation of protein secondary structure and error analysis from CD spectra. Anal Biochem 191:110–118

    Article  CAS  PubMed  Google Scholar 

  • Vasconcelos MA, Arruda FV, Carneiro VA, Silva HC, Nascimento KS, Sampaio AH, Cavada BS, Teixeira EH, Henriques M, Pereira MO (2014) Effect of algae and plant lectins on planktonic growth and biofilm formation in clinically relevant bacteria and yeasts. Biomed Res Int. doi:10.1155/2014/365272

    Google Scholar 

  • Vasta GR, Marchalonis JJ (1986) Galactosyl-binding lectins from the tunicate Didemnum candidum. Carbohydrate specificity and characterization of the combining site. J Biol Chem 261:9182–9186

    CAS  PubMed  Google Scholar 

  • Vasta GR, Ahmed H, Odom EW (2004) Structural and functional diversity of lectin repertoires in invertebrates, protochordates and ectothermic vertebrates. Curr Opin Struct Biol 14:617–630

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Xiao Y, Suzek TO, Zhang J, Wang J, Bryant SH (2009) PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res 37:1–11

    Article  Google Scholar 

  • Webb B, Sali A (2014) Comparative protein structure modeling using MODELLER. Curr Protoc Bioinformatics. doi:10.1002/0471250953.bi0506s47

  • Weidenmaier C, Peschel A (2008) Teichoic acids and related cell-wall glycopolymers in gram-positive physiology and host interactions. Nat Rev Microbiol 6:276–287

    Article  CAS  PubMed  Google Scholar 

  • Whitmore L, Wallace BA (2008) Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers 89:392–400

    Article  CAS  PubMed  Google Scholar 

  • Wittmann V, Pieters RJ (2013) Bridging lectin binding sites by multivalent carbohydrates. Chem Soc Rev 42:4492–4503

    Article  CAS  PubMed  Google Scholar 

  • Xu D, Zhang Y (2013) Ab initio structure prediction for Escherichia coli: towards genome-wide protein structure modeling and fold assignment. Sci Rep. doi:10.1038/srep01895

    Google Scholar 

  • Yang J, Zhang Y (2015) I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res 43:174–181

    Article  Google Scholar 

  • Yang J, Roy A, Zhang Y (2013) Protein-ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics 29:2588–2595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zelensky AN, Gready JE (2005) The C-type lectin-like superfamily. FEBS J 272:6179–61217

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Qiu R, Hu Y (2014) HdhCTL1 is a novel C-type lectin of abalone Haliotis discus hannai that agglutinates gram-negative bacterial pathogens. Fish Shellfish Immunol 41:466–472

    Article  CAS  PubMed  Google Scholar 

  • Zheng P, Wang H, Zhao J, Song L, Qiu L, Dong C, Wang B, Gai Y, Mu C, Li C, Ni D, Xing K (2008) A lectin (CfLec-2) aggregating staphylococcus haemolyticus from scallop Chlamys farreri. Fish Shellfish Immunol 24:286–293

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Brazilian agencies CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), FUNCAP (Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico), and FINEP (Financiadora de Estudos e Projetos). The authors thank CETENE for access to the mass spectrometer. The authors are especially grateful to Dr. Julia Campos for performing the MALDI-TOF experiments. The authors are grateful to Professor David Martin for helping in the English writing. A.H.S., C.S.N., and E.H.T. are senior investigators of CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Holanda Sampaio.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carneiro, R.F., Torres, R.C.F., Chaves, R.P. et al. Purification, Biochemical Characterization, and Amino Acid Sequence of a Novel Type of Lectin from Aplysia dactylomela Eggs with Antibacterial/Antibiofilm Potential. Mar Biotechnol 19, 49–64 (2017). https://doi.org/10.1007/s10126-017-9728-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-017-9728-x

Keywords

Navigation