Skip to main content

Advertisement

Log in

Microarray-Based Identification of Differentially Expressed Genes in Families of Turbot (Scophthalmus maximus) After Infection with Viral Haemorrhagic Septicaemia Virus (VHSV)

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Viral haemorrhagic septicaemia virus (VHSV) is one of the major threats to the development of the aquaculture industry worldwide. The present study was aimed to identify genes differentially expressed in several turbot (Scophthalmus maximus) families showing different mortality rates after VHSV. The expression analysis was conducted through genome-wide expression profiling with an oligo-microarray in the head kidney. A significant proportion of the variation in the gene expression profiles seemed to be explained by the genetic background, indicating that the mechanisms by which particular species and/or populations can resist a pathogen(s) are complex and multifactorial. Before the experimental infections, fish from resistant families (low mortality rates after VHSV infection) showed high expression of different antimicrobial peptides, suggesting that their pre-immune state may be stronger than fish of susceptible families (high mortality rates after VHSV infection). After infection, fish from both high- and low-mortality families showed an up-modulation of the interferon-induced Mx2 gene, the IL-8 gene and the VHSV-induced protein 5 gene compared with control groups. Low levels of several molecules secreted in the mucus were observed in high-mortality families, but different genes involved in viral entrance into target cells were down-regulated in low-mortality families. Moreover, these families also showed a strong down-modulation of marker genes related to VHSV target organs, including biochemical markers of renal dysfunction and myocardial injury. In general, the expression of different genes involved in the metabolism of sugars, lipids and proteins were decreased in both low- and high-mortality families after infection. The present study serves as an initial screen for genes of interest and provides an extensive overview of the genetic basis underlying the differences between families that are resistant or susceptible to VHSV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abollo E, Ordás C, Dios S, Figueras A, Novoa B (2005) Molecular characterisation of a turbot Mx cDNA. Fish Shellfish Immunol 19:185–190

    Article  PubMed  CAS  Google Scholar 

  • Amend DF, Smith L (1974) Pathophysiology of infectious hematopoietic necrosis virus disease in rainbow trout (Salmo gairdneri): early changes in blood and aspects of the immune response after injection of IHN virus. J Fish Res Board Can 31:1371–1378

    Article  Google Scholar 

  • Amend DF, Smith L (1975) Pathophysiology of infectious hematopoietic necrosis virus disease in rainbow trout: hematological and blood chemical changes in moribund fish. Infect Immun 11:171–179

    PubMed  CAS  Google Scholar 

  • Anty R, Gelsi E, Giudicelli J, Mariné-Barjoan E, Gual P, Benzaken S, Saint-Paul MC, Sadoul JL, Huet PM, Tran A (2007) Glucose intolerance and hypoadiponectinemia are already present in lean patients with chronic hepatitis C infected with genotype non-3 viruses. Eur J Gastroenterol Hepatol 19:671–677

    Article  PubMed  Google Scholar 

  • Aoki T, Hirono I, Kondo H, Hikima J, Jung TS (2011) Microarray technology is an effective tool for identifying genes related to the aquacultural improvement of Japanese flounder, Paralichthys olivaceus. Comp Biochem Physiol Part D Genomics Proteomics 6:39–43

    Article  PubMed  Google Scholar 

  • Armstrong SG, Renton KW (1994) Factors involved in the down-regulation of cytochrome P450 during Listeria monocytogenes infection. Int J Immunopharmacol 16:747–754

    Article  PubMed  CAS  Google Scholar 

  • Ayatse JO (1991) Human retinol-binding protein: its relationship to renal function in renal diseases. West Afr J Med 10:226–231

    PubMed  CAS  Google Scholar 

  • Baumann H, Gauldie J (1994) The acute phase response. Immunol Today 15:74–80

    Article  PubMed  CAS  Google Scholar 

  • Bernard A, Zwingelstein G, Meister R, Wild TF (1988) Hyperinsulinemia induced by canine distemper virus infection of mice and its correlation with the appearance of obesity. Comp Biochem Physiol B 91:691–696

    Article  PubMed  CAS  Google Scholar 

  • Bleau AM, Fradette C, El-Kadi AO, Côté MC, du Souich P (2001) Cytochrome P450 down-regulation by serum from. Drug Metab Dispos 29:1007–1012

    PubMed  CAS  Google Scholar 

  • Boes E, Fliser D, Ritz E, König P, Lhotta K, Mann JF, Müller GA, Neyer U, Riegel W, Riegler P, Kronenberg F (2006) Apolipoprotein A-IV predicts progression of chronic kidney disease: the mild to moderate kidney disease study. J Am Soc Nephrol 17:528–536

    Article  PubMed  CAS  Google Scholar 

  • Botto M, Kirschfink M, Macor P, Pickering MC, Wurzner R, Tedesco F (2009) Complement in human diseases: lessons from complement deficiencies. Mol Immunol 46:2774–2783

    Article  PubMed  CAS  Google Scholar 

  • Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball CA, Causton HC, Gaasterland T, Glenisson P, Holstege FC, Kim IF, Markowitz V, Matese JC, Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Taylor R, Vilo J, Vingron M (2001) Minimum information about a microarray experiment (MIAM)—toward standards for microarray data. Nat Genet 29:365–371

    Article  PubMed  CAS  Google Scholar 

  • Brudeseth BE, Raynard RS, King JA, Evensen O (2005) Sequential pathology after experimental infection with marine viral hemorrhagic septicemia virus isolates of low and high virulence in turbot (Scophthalmus maximus L.). Vet Pathol 42:9–18

    Article  PubMed  CAS  Google Scholar 

  • Byon JY, Ohira R, Hirono I, Aoki T (2005) Use of a cDNA microarray to study immunity against viral hemorrhagic septicemia (VHS) in Japanese flounder (Paralichthys olivaceus) following DNA vaccination. Fish Shellfish Immunol 18:135–147

    Article  PubMed  CAS  Google Scholar 

  • Byon JY, Ohira T, Hirono I, Aoki T (2006) Comparative immune responses in Japanese flounder Paralichthys olivaceus after vaccination with viral hemorrhagic septicemia virus (VHSV) recombinant glycoprotein and DNA vaccine using microarray analysis. Vaccine 24:921–930

    Article  PubMed  CAS  Google Scholar 

  • Castric J, de Kinkelin P (1984) Experimental study of the susceptibility of two marine fish species, sea bass (Dicentrarchus labrax) and turbot (Scophthalmus maximus) to viral haemorrhagic septicaemia. Aqua 41:203–212

    Article  Google Scholar 

  • Cerdà J, Douglas S, Reith M (2010) Genomic resources for flatfish research and their applications. J Fish Biol 77:1045–1070

    Article  PubMed  Google Scholar 

  • Chia TJ, Wu YC, Chen JY, Chi SC (2010) Antimicrobial peptides (AMP) with antiviral activity against fish nodavirus. Fish Shellfish Immunol 28:434–439

    Article  PubMed  CAS  Google Scholar 

  • Cooper NR, Nemerow GR (1989) Complement and infectious agents: a tale of disguise and deception. Complement Inflamm 6:249–258

    PubMed  CAS  Google Scholar 

  • Dorson M, Quillet E, Hollebecq MG (1995) Selection of rainbow trout resistant to viral haemorrhagic septicaemia virus and transmission of resistance by gynogenesis. Vet Res 26:361–368

    PubMed  CAS  Google Scholar 

  • Douglas SE (2006) Microarray studies of gene expression in fish. OMICS 10:474–489

    Article  PubMed  CAS  Google Scholar 

  • Douglas SE, Knickle LC, Kimball J, Reith ME (2007) Comprehensive EST analysis of Atlantic halibut (Hippoglossus hippoglossus), a commercially relevant aquaculture species. BMC Genomics 8:144

    Article  PubMed  Google Scholar 

  • Encinas P, Rodríguez-Milla MA, Novoa B, Estepa A, Figueras A, Coll J (2010) Zebrafish fin immune responses during high mortality infections with viral haemorrhagic septicemia rhabdovirus. A proteomic and transcriptomic approach. BMC Genomics 11:518

    Article  PubMed  Google Scholar 

  • Falco A, Ortega-Villaizan M, Chico V, Brocal I, Perez L, Coll JM, Estepa A (2009) Antimicrobial peptides as model molecules for the development of novel antiviral agents in aquaculture. Mini Rev Med Chem 9:1159–1164

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Trujillo A, Ferro P, Garcia-Rosado E, Infante C, Alonso MC, Bejar J, Borrego JJ, Manchado M (2008) Poly I:C induces Mx transcription and promotes an antiviral state against sole aquabirnavirus in the flatfish Senegalese sole (Solea senegalensis Kaup). Fish Shellfish Immunol 24:279–285

    Article  PubMed  CAS  Google Scholar 

  • Friedman HM (2006) Keratin, a dual role in herpes simplex virus pathogenesis. J Clin Virol 35:103–105

    Article  PubMed  CAS  Google Scholar 

  • Glorieux S, Favoreel HW, Steukers L, Vandekerckhove AP, Nauwynck HJ (2011) A trypsin-like serine protease is involved in pseudorabies virus invasion through the basement membrane barrier of porcine nasal respiratory mucosa. Vet Res 42:58

    Article  PubMed  CAS  Google Scholar 

  • Hagenaars A, Meyer IJ, Herzke D, Pardo BG, Martinez P, Pabon M, De Coen W, Knapen D (2011) The search for alternative aqueous film forming foams (AFFF) with a low environmental impact: physiological and transcriptomic effects of two Forafac(®) fluorosurfactants in turbot. Aquat Toxicol 104:168–176

    Article  PubMed  CAS  Google Scholar 

  • Haller O, Stertz S, Kochs G (2007) The Mx GTPase family of interferon-induced antiviral proteins. Microbes Infect 9:1636–1643

    Article  PubMed  CAS  Google Scholar 

  • Hill JM, Bhattacharjee PS, Neumann DM (2007) Apolipoprotein E alleles can contribute to the pathogenesis of numerous clinical conditions including HSV-1 corneal disease. Exp Eye Res 84:801–811

    Article  PubMed  CAS  Google Scholar 

  • Hishiki T, Shimizu Y, Tobita R, Sugiyama K, Ogawa K, Funami K, Ohsaki Y, Fujimoto T, Takaku H, Wakita T, Baumert TF, Miyanari Y, Shimotohno K (2010) Infectivity of hepatitis C virus is influenced by association with apolipoprotein E isoforms. J Virol 84:12048–12057

    Article  PubMed  CAS  Google Scholar 

  • Jasin HE (1977) Absence of the eighth component of complement in association with systemic lupus erythematosus-like disease. J Clin Invest 60:709–715

    Article  PubMed  CAS  Google Scholar 

  • Jørgensen HB, Sørensen P, Cooper GA, Lorenzen E, Lorenzen N, Hansen MH, Koop BF, Henryon M (2011) General and family-specific gene expression responses to viral hemorrhagic septicaemia virus infection in rainbow trout (Oncorhynchus mykiss). Mol Immunol 48:1046–1058

    Article  PubMed  Google Scholar 

  • Keiser PB, Miller LB, Biggs-Cicatelli S, Zollinger WD (2009) Plasma fibrinogen levels after vaccination with a native outer membrane vesicle vaccine for Neisseria meningitidis. Vaccine 27:6809–6813

    Article  PubMed  CAS  Google Scholar 

  • King JA, Snow M, Skall HF, Raynard RS (2001) Experimental susceptibility of Atlantic salmon Salmo salar and turbot Scophthalmus maximus to European freshwater and marine isolates of viral haemorrhagic septicaemia virus. Dis Aquat Org 47:25–31

    Article  Google Scholar 

  • Kurobe T, Yasuike M, Kimura T, Hirono I, Aoki T (2005) Expression profiling of immune-related genes from Japanese flounder Paralichthys olivaceus kidney cells using cDNA microarrays. Dev Comp Immunol 29:515–523

    Article  PubMed  CAS  Google Scholar 

  • Linden SK, Sutton P, Karlsson NG, Korolik V, McGuckin MA (2008) Mucins in the mucosal barrier to infection. Mucosal Immunol 1:183–197

    Article  PubMed  CAS  Google Scholar 

  • Lorenzen N, Olensen NJ (1997) Immunization with viral antigens: viral haemorrhagic septicaemia. Dev Biol Stand 90:201–209

    PubMed  CAS  Google Scholar 

  • Lorenzen N, Lorenzen E, Einer-Jensen K (2001) Immunity to viral haemorrhagic septicaemia (VHS) following DNA vaccination of rainbow trout at an early life-stage. Fish Shellfish Immunol 11:585–591

    Article  PubMed  CAS  Google Scholar 

  • Lorenzen N, Lorenzen E, Einer-Jensen K, LaPatra SE (2002a) DNA vaccines as a tool for analysing the protective immune response against rhabdoviruses in rainbow trout. Fish Shellfish Immunol 12:439–453

    Article  PubMed  CAS  Google Scholar 

  • Lorenzen N, Lorenzen E, Einer-Jensen K, LaPatra SE (2002b) Immunity induced shortly after DNA vaccination of rainbow trout against rhabdoviruses protects against heterologous virus but not against bacterial pathogens. Dev Comp Immunol 26:173–179

    Article  PubMed  CAS  Google Scholar 

  • Lorenzen E, Lorenzen N, Einer-Jensen K, Brudeseth B, Evensen Ø (2005) Time course study of in situ expression of antigens following DNA-vaccination against VHS in rainbow trout (Oncorhynchus mykiss Walbaum) fry. Fish Shellfish Immunol 19:27–41

    Article  PubMed  CAS  Google Scholar 

  • McDonough AA, Leong PKK, Yang LE (2003) Mechanisms of pressure natriuresis. Ann N Y Acad Sci 986:669–677

    Article  PubMed  CAS  Google Scholar 

  • Millán A, Gómez-Tato A, Fernández C, Pardo BG, Álvarez-Dios JA, Calaza M, Bouza C, Vázquez M, Cabaleiro S, Martínez P (2010) Design and performance of a turbot (Scophthalmus maximus) oligo-microarray based on ESTs from immune tissues. Mar Biotechnol 12:452–465

    Article  PubMed  Google Scholar 

  • Miyata T, Jadoul M, Kurokawa K, Van Ypersele C (1998) Microglobulin in renal disease. J Am Soc Nephrol 9:1723–1735

    PubMed  CAS  Google Scholar 

  • Morgan ET (1997) Regulation of cytochromes P450 during inflammation and infection. Drug Metab Rev 29:1129–1188

    Article  PubMed  CAS  Google Scholar 

  • Narisawa T, Murakami A, Aiba M, Takaba T (1998) Evaluation of highly damaged renal function following extracorporeal circulation. Usefulness of alpha 1-microglobulin index. Jpn J Thorac Cardiovasc Surg 46:1097–1104

    Article  PubMed  CAS  Google Scholar 

  • Novoa B, Mackenzie S, Figueras A (2010) Inflammation and innate immune response against viral infections in marine fish. Curr Pharm Des 16:4175–4184

    Article  PubMed  CAS  Google Scholar 

  • O’Farrell C, Vaghefi N, Cantonnet M, Buteau B, Boudinot P, Benmansour A (2002) Survey of transcript expression in rainbow trout leukocytes reveals a major contribution of interferon-responsive genes in the early response to a rhabdovirus infection. J Virol 76:8040–8049

    Article  PubMed  Google Scholar 

  • Osuna-Jiménez I, Williams TD, Prieto-Alamo MJ, Abril N, Chipman JK, Pueyo C (2009) Immune- and stress-related transcriptomic responses of Solea senegalensis stimulated with lipopolysaccharide and copper sulphate using heterologous cDNA microarrays. Fish Shellfish Immunol 26:699–706

    Article  PubMed  Google Scholar 

  • Owen DM, Huang H, Ye J, Gale M Jr (2009) Apolipoprotein E on hepatitis C virion facilitates infection through interaction with low-density lipoprotein receptor. Virology 394:99–108

    Article  PubMed  CAS  Google Scholar 

  • Palaksha KJ, Shin GW, Kim YR, Jung TS (2008) Evaluation of non-specific immune components from the skin mucus of olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol 24:479–488

    Article  PubMed  CAS  Google Scholar 

  • Park KC, Osborne JA, Montes A, Dios S, Nerland AH, Novoa B, Figueras A, Brown LL, Johnson SC (2009) Immunological responses of turbot (Psetta maxima) to nodavirus infection or polyriboinosinic polyribocytidylic acid (pIC) stimulation, using expressed sequence tags (ESTs) analysis and cDNA microarrays. Fish Shellfish Immunol 26:91–108

    Article  PubMed  CAS  Google Scholar 

  • Pasupuleti M, Schmidtchen A, Malmsten M (2011) Antimicrobial peptides: key components of the innate immune system. Crit Rev Biotechnol. doi:10.3109/07388551.2011.594423

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2002–2007

    Article  Google Scholar 

  • Pickering MC, Macor P, Fish J, Durigutto P, Bossi F, Petry F, Botto M, Tedesco F (2008) Complement C1q and C8beta deficiency in an individual with recurrent bacterial meningitis and adult-onset systemic lupus erythematosus-like illness. Rheumatology (Oxford) 47:1588–1589

    Article  CAS  Google Scholar 

  • Pless-Mulloli T, Boettcher M, Steiner M, Berger J (1998) alpha-1-Microglobulin: epidemiological indicator for tubular dysfunction induced by cadmium? Occup Environ Med 55:440–445

    Article  PubMed  CAS  Google Scholar 

  • Post FA, Wyatt CM, Mocroft A (2010) Biomarkers of impaired renal function. Curr Opin HIV AIDS 5:524–530

    Article  PubMed  Google Scholar 

  • Rajanbabu V, Chen JY (2011) Antiviral function of tilapia hepcidin 1–5 and its modulation of immune-related gene expressions against infectious pancreatic necrosis virus (IPNV) in Chinook salmon embryo (CHSE)-214 cells. Fish Shellfish Immunol 30:39–44

    Article  PubMed  CAS  Google Scholar 

  • Reed LJ, Müench H (1938) A simple method of estimating 50 % endpoints. Am J Hyg 27:493–497

    Google Scholar 

  • Ross K, McCarthy U, Huntly PJ, Wood BP, Stuart D, Rough EI, Smail DA, Bruno DW (1994) An outbreak of viral haemorrhagic septicaemia (VHS) in turbot (Scophthalmus maximus) in Scotland. Bull Eur Assoc Fish Pathol 14:213

    Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana, Totowa

    Google Scholar 

  • Salinas I, Zhang YA, Sunyer JO (2011) Mucosal immunoglobulins and B cells of teleost fish. Dev Comp Immunol 35:1346–1365

    Google Scholar 

  • Sanford BA, Davison VE, Ramsay MA (1982) Fibrinogen-mediated adherence of group A Streptococcus to influenza A virus-infected cell cultures. Infect Immun 38:513–520

    PubMed  CAS  Google Scholar 

  • Saraswat RC, Ram N (1970) Amino acid composition of some skeletal elements of the carp Cirrhina mrigala (Ham). Indian J Fish 9:22–25

    Google Scholar 

  • Sarropoulou E, Fernandes JM, Mitter K, Magoulas A, Mulero V, Sepulcre MP, Figueras A, Novoa B, Kotoulas G (2010) Evolution of a multifunctional gene: the warm temperature acclimation protein Wap65 in the European seabass Dicentrarchus labrax. Mol Phylogenet Evol 55:640–649

    Article  PubMed  CAS  Google Scholar 

  • Schlotfeldt HJ, Ahne W, Jørgensen PEV, Glende W (1991) Occurrence of viral haemorrhagic septicaemia in turbot Scophthalmus maximus—a natural outbreak. Bull Eur Ass Fish Pathol 11:105–107

    Google Scholar 

  • Sha Z, Xu P, Takano T, Liu H, Terhune J, Liu Z (2008) The warm temperature acclimation protein Wap65 as an immune response gene: its duplicates are differentially regulated by temperature and bacterial infections. Mol Immunol 45:1458–1469

    Article  PubMed  CAS  Google Scholar 

  • Shephard KL (1994) Functions for fish mucus. Rev Fish Biol Fish 4:401–429

    Article  Google Scholar 

  • Shi YH, Chen J, Li CH, Yang HY, Lu XJ (2011) The establishment of a library screening method based on yeast two-hybrid system and its use to determine the potential interactions of liver proteins in ayu, Plecoglossus altivelis. Fish Shellfish Immunol 30:1184–1187

    Article  PubMed  CAS  Google Scholar 

  • Slierendrecht WJ, Lorenzen N, Glamann J, Koch C, Rombout JHWM (1995) Immunocytochemical analysis of a monoclonal antibody specific for rainbow trout (Oncorhynchus mykiss) granulocytes and thrombocytes. Vet Immunol Immunopathol 46:349–360

    Article  PubMed  CAS  Google Scholar 

  • Slierendrecht WJ, Olesen NJ, Lorenzen N, Jorgensen PEV, Gottschau A, Koch C (1996) Genetic alloforms of rainbow trout (Oncorhynchus mykiss) complement component C3 and resistance to viral haemorrhagic septicaemia under experimental conditions. Fish Shellfish Immunol 6:235–237

    Article  Google Scholar 

  • Slierendrecht WJ, Olesen NJ, Juul-Madsen HR (2001) Rainbow trout offspring with different resistance to viral haemorrhagic septicaemia. Fish Shellfish Immunol 11:155–167

    Article  PubMed  CAS  Google Scholar 

  • Smail DA (1999) Fish diseases and disorders. In: Woo PTK, Bruno DW (eds) Viral, bacterial and fungal infections. CAB International, New York

    Google Scholar 

  • Snow M, Smail DA (1999) Experimental susceptibility of turbot Scophthalmus maximus to viral haemorrhagic septicaemia virus isolated from cultivated turbot. Dis Aquat Organ 38:163–168

    Article  PubMed  CAS  Google Scholar 

  • St Louis-Cormier EA, Osterland CK, Anderson PD (1984) Evidence for a cutaneous secretory immune system in rainbow trout (Salmo gairdneri). Dev Comp Immunol 8:71–80

    Article  PubMed  CAS  Google Scholar 

  • Tafalla C, Novoa B (2001) Respiratory burst of turbot (Scophthalmus maximus) macrophages in response to experimental infection with viral haemorrhagic septicaemia virus (VHSV). Fish Shellfish Immunol 11:727–734

    Article  PubMed  CAS  Google Scholar 

  • Tafalla C, Figueras A, Novoa B (1998) In vitro interaction of viral haemorrhagic septicaemia virus and leukocytes from trout (Oncorhynchus mykiss) and turbot (Scophthalmus maximus). Vet Immunol Immunopathol 62:359–366

    Article  PubMed  CAS  Google Scholar 

  • Tafalla C, Figueras A, Novoa B (2001) Viral hemorrhagic septicemia virus alters turbot Scophthalmus maximus macrophage nitric oxide production. Dis Aquat Organ 47:101–107

    Article  PubMed  CAS  Google Scholar 

  • Tafalla C, Coll J, Secombes CJ (2005) Expression of genes related to the early immune response in rainbow trout (Oncorhynchus mykiss) after viral haemorrhagic septicemia virus (VHSV) infection. Dev Comp Immunol 29:615–626

    Article  PubMed  CAS  Google Scholar 

  • Tomasec J, Fijan N (1971) Virusne bolestiriba (viral diseases of fish). Final report on research under a part of project 6n/1966, Zagreb

  • Wang YD, Kung CW, Chen JY (2010) Antiviral activity by fish antimicrobial peptides of epinecidin-1 and hepcidin 1–5 against nervous necrosis virus in medaka. Peptides 31:1026–1033

    Article  PubMed  Google Scholar 

  • Watson ME, Guenther RW, Royce RD (1956) Hematology of healthy and virus-diseased Sockeye salmon, Oncorhynchus nerka. Zoologica 41:27–38

    Google Scholar 

  • Winton JR (1997) Immunization with viral antigens: infectious haemotopoietic necrosis. Dev Biol Stand 90:211–220

    PubMed  CAS  Google Scholar 

  • Workenhe ST, Hori TS, Rise ML, Kibenge MJT, Kibenge FSB (2009) Infectious salmon anaemia virus (ISAV) isolates induce distinct gene expression responses in the Atlantic salmon (Salmo salar) macrophage/dendritic-like cell line TO, assessed using genomic techniques. Mol Immunol 46:2955–2974

    Article  PubMed  CAS  Google Scholar 

  • Xie FJ, Zhang ZP, Lin P, Wang SH, Zou ZH, Wang YL (2009) Identification of immune responsible fibrinogen beta chain in the liver of large yellow croaker using a modified annealing control primer system. Fish Shellfish Immunol 27:202–209

    Article  PubMed  CAS  Google Scholar 

  • Yasutake WT (1975) Fish virus diseases: clinical, histopathological and comparative aspects. In: Ribelin WE, Migaki G (eds) The pathology of fishes. University of Wisconsin Press, Madison

    Google Scholar 

  • Zhou JG, Wei JG, Xu D, Cui HC, Yan Y, Ou-Yang ZL, Huang XH, Huang YH, Qin QW (2011) Molecular cloning and characterization of two novel hepcidins from orange-spotted grouper, Epinephelus coioides. Fish Shellfish Immunol 30:559–568

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank the Spanish Ministerio de Ciencia e Innovación for funding through project CSD2007-00002 “Aquagenomics” of the Consolider-Ingenio 2010 program. We also wish to thank Ana Riaza from Stolt Sea Farm for providing the turbot families and Paulino Martínez from Universidad de Santiago de Compostela for his support. Dr. P. Díaz-Rosales wishes to thank the Spanish National Research Council (CSIC, Spain) for a JAE-Doc contract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Figueras.

Additional information

P. Díaz-Rosales and A. Romero contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Differentially expressed genes determined by three-way ANOVA analysis using P < 0.05 and a fold-change ratio equal or greater than two. Only genes with homology to any known sequence in public databases are presented between low- and high-mortality families (LM and HM, respectively). Fold-change ratios lower than two are not represented. The selected genes represented in Table 1 are highlighted. (DOCX 47 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Díaz-Rosales, P., Romero, A., Balseiro, P. et al. Microarray-Based Identification of Differentially Expressed Genes in Families of Turbot (Scophthalmus maximus) After Infection with Viral Haemorrhagic Septicaemia Virus (VHSV). Mar Biotechnol 14, 515–529 (2012). https://doi.org/10.1007/s10126-012-9465-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-012-9465-0

Keywords

Navigation