Skip to main content
Log in

A formal framework to represent spatial knowledge

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

Visual representations are an essential element in human–computer interaction and can be conceived as a collection of graphical objects arranged in a two-dimensional space. It is quite natural to model visual representations through the qualitative relationships holding between their objects, and therefore, qualitative spatial relations are a fundamental way of representing spatial knowledge. To this aim, in this paper we present a framework of qualitative spatial relations providing a general, domain-independent approach to specify visual representations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Allen JF Maintaining knowledge about temporal intervals. Commun ACM 26(11):832–843. doi:10.1145/182.358434

  2. Apache.org (2015) Apache commons scxml. http://commons.apache.org/proper/commons-scxml

  3. Balbiani P, Condotta J, del Cerro LF (1998) A model for reasoning about bidemsional temporal relations. In: Proceedings of the sixth international conference on principles of knowledge representation and reasoning (KR’98), Trento, Italy, 2–5 June 1998, pp 124–130

  4. Chen J, Cohn AG, Liu D, Wang S, Ouyang J, Yu Q (2015) A survey of qualitative spatial representations. Knowl Eng Rev 30:106–136. http://journals.cambridge.org/article_S0269888913000350

  5. Clementini E, Di Felice P, Hernández D (1997) Qualitative representation of positional information. Artif Intell 95(2):317–356. doi:10.1016/S0004-3702(97)00046-5

    Article  MathSciNet  MATH  Google Scholar 

  6. Clementini E, Felice PD, Oosterom PV (1993) A small set of formal topological relationships suitable for end-user interaction. In: Proceedings of the third international symposium on advances in spatial databases, SSD ’93, Springer, London, pp 277–295. http://dl.acm.org/citation.cfm?id=647223.718898

  7. Cohn AG, Li S, Liu W, Renz J (2014) Reasoning about topological and cardinal direction relations between 2-dimensional spatial objects. J Artif Intell Res (JAIR) 51:493–532. doi:10.1613/jair.4513

    MathSciNet  MATH  Google Scholar 

  8. Cohn AG, Randell DA, Cui Z (1995) Taxonomies of logically defined qualitative spatial relations. Int J Hum Comput Stud 43(5–6):831–846. doi:10.1006/ijhc.1995.1077

    Article  Google Scholar 

  9. Della Penna G, Magazzeni D, Orefice S (2012) A spatial relation-based framework to perform visual information extraction. Knowl Inf Syst 30(3):667–692. doi:10.1007/s10115-011-0394-4

    Article  Google Scholar 

  10. Devlin P (2007) Brachytherapy: applications and techniques. Lippincott Williams & Wilkins, Philadelphia

  11. Du Y, Liang F, Sun Y (2012) Integrating spatial relations into case-based reasoning to solve geographic problems. Knowl Based Syst 33:111–123

    Article  Google Scholar 

  12. Dube MP, Egenhofer MJ ( 2014) Partitions to improve spatial reasoning. In: Proceedings of the 1st ACM SIGSPATIAL PhD workshop, SIGSPATIAL PhD ’14, ACM, New York, NY, USA, pp 1:1–1:5. doi:10.1145/2694859.2694864

  13. Egenhofer MJ, Franzosa RD (1991) Point set topological relations. Int J Geogr Inf Syst 5(2):161–174. doi:10.1080/02693799108927841

    Article  Google Scholar 

  14. Egenhofer MJ, Mark DM, Herring J ( 1994) The 9-intersection: formalism and its use for natural-language spatial predicates. Technical Report 94-1, National Center for Geographic Information and Analysis

  15. Feder J (1971) Plex languages. Inf Sci 3(3):225–241. doi:10.1016/S0020-0255(71)80008-7

    Article  MathSciNet  MATH  Google Scholar 

  16. Frank AU (1991) Qualitative spatial reasoning with cardinal directions. In: Proceedings 7th Austrian conference on artificial intelligence, ÖGAI-91, Wien, 24–27 Sept 1991, pp 157–167

  17. Freksa C (1992) Using orientation information for qualitative spatial reasoning. In: Theories and methods of spatio-temporal reasoning in geographic space, Proceedings of international conference GIS - from space to territory: Theories and methods of spatio-temporal reasoning, Pisa, Italy, 21–23 Sept 1992, pp 162–178. doi:10.1007/3-540-55966-3_10

  18. Fuccella V, Costagliola G (2015) Unistroke gesture recognition through polyline approximation and alignment. In: Proceedings of the 33rd annual ACM conference on human factors in computing systems, CHI 2015, Seoul, Republic of Korea, 18–23 April 2015, pp 3351–3354. doi:10.1145/2702123.2702505

  19. Goyal R, Egenhofer M (2001) Similarity of cardinal directions. In: Jensen C, Schneider M, Seeger B, Tsotras V (eds) Advances in spatial and temporal databases, vol 2121, lecture notes in computer science. Springer, Berlin, pp 36–55. doi:10.1007/3-540-47724-1_3

  20. Hernández D, Clementini E, Felice PD ( 1995) Qualitative distances. In: COSIT, pp 45–57. doi:10.1007/3-540-60392-1_4

  21. Kong J, Zhang K, Zeng X (2006) Spatial graph grammars for graphical user interfaces. ACM Trans Comput Hum Interact 13(2):268–307. doi:10.1145/1165734.1165739

    Article  Google Scholar 

  22. Kor A-L, Bennett B (2013) A hybrid reasoning model for “whole and part” cardinal direction relations. Adv Artif Intell 3(3–3):3. doi:10.1155/2013/205261

    Google Scholar 

  23. Krantz S (1999) Handbook of complex variables. Birkhäuser Basel, Boston. doi:10.1007/978-1-4612-1588-2

  24. Kunze L, Doreswamy KK, Hawes N (2014) Using qualitative spatial relations for indirect object search. In: 2014 IEEE international conference on robotics and automation, ICRA 2014, Hong Kong, China, May 31–June 7, 2014, pp 163–168. doi:10.1109/ICRA.2014.6906604

  25. Li S, Cohn AG (2012) Reasoning with topological and directional spatial information. Comput Intell 28(4):579–616. doi:10.1111/j.1467-8640.2012.00431.x

    Article  MathSciNet  MATH  Google Scholar 

  26. Li S, Liu W (2015) Cardinal directions: a comparison of direction relation matrix and objects interaction matrix. Int J Geogr Inf Sci 29(2):194–216. doi:10.1080/13658816.2014.954580

    Article  Google Scholar 

  27. Li S, Long Z, Liu W, Duckham M, Both A (2015) On redundant topological constraints. Artif Intell 225(C):51–76. doi:10.1016/j.artint.2015.03.010

    Article  MathSciNet  MATH  Google Scholar 

  28. Li S, Ying M (2003) Region connection calculus: its models and composition table. Artif Intell 145(1–2):121–146

    Article  MathSciNet  MATH  Google Scholar 

  29. Lober WB, Trigg LJ, Bliss D, Brinkley JM (2001) Iml: an image markup language. In: Proceedings AMIA symposium, pp 403–7. http://www.biomedsearch.com/nih/IML-image-markup-language/11825219.html

  30. Moens M-F (2006) Information extraction: algorithms and prospects in a retrieval context, vol 21 of the information retrieval series. Springer, New York

    MATH  Google Scholar 

  31. Moratz R ( 2006) Representing relative direction as a binary relation of oriented points. In: ECAI 2006, 17th European conference on artificial intelligence, Aug 29–Sept 1, 2006, Riva del Garda, Italy, including prestigious applications of intelligent systems (PAIS 2006), Proceedings’, pp 407–411

  32. Moratz R, Ragni M (2008) Qualitative spatial reasoning about relative point position. J Vis Lang Comput 19(1):75–98. doi:10.1016/j.jvlc.2006.11.001

    Article  Google Scholar 

  33. Mossakowski T, Moratz R (2012) Qualitative reasoning about relative direction of oriented points. Artif Intell 180–181:34–45. doi:10.1016/j.artint.2011.10.003

    Article  MathSciNet  MATH  Google Scholar 

  34. Navarrete I, Morales A, Sciavicco G, Cardenas-Viedma M (2013) Spatial reasoning with rectangular cardinal relations. Ann Math Artif Intell 67(1):31–70. doi:10.1007/s10472-012-9327-5

    Article  MathSciNet  MATH  Google Scholar 

  35. Pokrajac D, Hoskinson RL, Obradovic Z (2003) Modeling spatial-temporal data with a short observation history. Knowl Inf Syst 5(3):368–386. doi:10.1007/s10115-002-0094-1

    Article  Google Scholar 

  36. Randell DA, Cui Z, Cohn AG ( 1992) A spatial logic based on regions and connection. In: Proceedings of the 3rd international conference on principles of knowledge representation and reasoning (KR’92). Cambridge, MA, 25-29 Oct 1992, pp 165–176

  37. Schneider M, Chen T, Viswanathan G (2012) Cardinal directions between complex regions. ACM Trans Database Syst 37(2):8:1–8:40. doi:10.1145/2188349.2188350

    Article  Google Scholar 

  38. Skiadopoulos S, Koubarakis M (2004) Composing cardinal direction relations. Artif Intell 152(2):143–171

    Article  MathSciNet  MATH  Google Scholar 

  39. Sun H (2009) Efficient algorithms for spatial configuration information retrieval. Knowl Based Syst 22(6):403–409

    Article  Google Scholar 

  40. Tang X (2010) A quantitative directional relations model considering topology and distance. Int J Image Graph Signal Process 2(2):18–24

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Della Penna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Della Penna, G., Magazzeni, D. & Orefice, S. A formal framework to represent spatial knowledge. Knowl Inf Syst 51, 311–338 (2017). https://doi.org/10.1007/s10115-016-0975-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-016-0975-3

Keywords

Navigation