Skip to main content

Advertisement

Log in

Fir decline and mortality in the southern Siberian Mountains

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

Increased dieback and mortality of “dark needle conifer” (DNC) stands (composed of fir (Abies sibirica), Siberian pine (Pinus sibirica) and spruce (Picea obovata)) were documented in Russia during recent decades. Here we analyzed spatial and temporal patterns of fir decline and mortality in the southern Siberian Mountains based on satellite, in situ and dendrochronological data. The studied stands are located within the boundary between DNC taiga to the north and forest-steppe to the south. Fir decline and mortality were observed to originate where topographic features contributed to maximal water-stress risk, i.e., steep (18°–25°), convex, south-facing slopes with a shallow well-drained root zone. Fir regeneration survived droughts and increased stem radial growth, while upper canopy trees died. Tree ring width (TRW) growth negatively correlated with vapor pressure deficit (VPD), drought index and occurrence of late frosts, and positively with soil water content. Previous year growth conditions (i.e., drought index, VPD, soil water anomalies) have a high impact on current TRW (r = 0.60–0.74). Fir mortality was induced by increased water stress and severe droughts (as a primary factor) in synergy with bark-beetles and fungi attacks (as secondary factors). Dendrochronology data indicated that fir mortality is a periodic process. In a future climate with increased aridity and drought frequency, fir (and Siberian pine) may disappear from portions of its current range (primarily within the boundary with the forest-steppe) and is likely to be replaced by drought-tolerant species such as Pinus sylvestris and Larix sibirica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl 1(1):95–111. doi:10.1111/j.1752-4571.2007.00013.x

    Article  Google Scholar 

  • Allen CD, Breshears DD, McDowell NG (2015) On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6(8):129. doi:10.1890/ES15-00203.1

    Article  Google Scholar 

  • Anderegg LDL, Anderegg WRL, Berry JA (2013) Tree physiology review: not all droughts are created equal: translating meteorological drought into woody plant mortality. Tree Physiol 33(7):701–712. doi:10.1093/treephys/tpt044

    Article  Google Scholar 

  • Arhipova NG (2013) On the problem of spruce (Picea abies (L.) Karst.) decline in Latvia. In: The problem of spruce stands decline. Reports of International seminar. Colorpoint Publishing House, Minsk [In Russian]

  • Breda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann For Sci 63:625–644. doi:10.1051/forest:2006042

    Article  Google Scholar 

  • Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Field TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martínez-Vilalta J, Mayr S, Mencuccini M, Mitchell PJ, Nardini A, Pittermann J, Pratt RB, Sperry JS, Westoby M, Wright IJ, Zanne AE (2012) Global convergence in the vulnerability of forests to drought. Nature 491:752–755. doi:10.1038/nature11688

    CAS  Google Scholar 

  • Chuprov NP (2008) About problem of spruce decay in European North of Russia. Rus J For 1:24–26 [In Russian]

    Google Scholar 

  • Cook ER, Holmes RL (1986) Users manual for program Arstan. In: Holmes RL, Adams RK, Fritts HC (eds) Tree-ring chronologies of western North America: California, eastern Oregon and northern Great Basin. Laboratory of Tree-Ring Research, University of Arizona, Tucson, pp 50–65

    Google Scholar 

  • Fettig CJ, Reid ML, Bentz BJ, Sevanto S, Spittlehouse DL, Wang T (2013) Changing climates, changing forests: a western North American perspective. J For 111(3):214–228. doi:10.5849/jof.12-085

    Google Scholar 

  • Fritts HC (1991) Reconstruction large-scale climatic patterns from tree-ring data: a diagnostic analysis. University of Arizona Press, Tucson

    Google Scholar 

  • Guarın A, Taylor AH (2005) Drought triggered tree mortality in mixed conifer forests in Yosemite National Park, California, USA. For Ecol Manag 218:229–244. doi:10.1016/j.foreco.2005.07.014

    Article  Google Scholar 

  • Hijioka Y, Lin E, Pereira JJ, Corlett RT, Cui X, Insarov GE, Lasco RD, Lindgren E, Surjan A (2014) Asia. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Barros, V.R., C.B. Field, D.J. Dokken, M.D. Mastrandrea, K.J. Mach, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L.White (eds.)]. Cambridge University Press, Cambridge, New York, NY, pp 1327–1370

  • Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 44:69–75

    Google Scholar 

  • Kagawa A, Sugimoto A, Maximov TC (2006) Seasonal course of translocation, storage and remobilization of 13C pulse-labeled photoassimilate in naturally growing Larix gmelinii saplings. N Phytol 171:793–804. doi:10.1111/j.1469-8137.2006.01780.x

    Article  CAS  Google Scholar 

  • Kharuk VI, Ranson KJ, Im ST, Dvinskaya ML (2006) Forest-tundra larch forests and climatic trends. Rus J Ecol 37(5):291–298. doi:10.1134/S1067413606050018

    Article  Google Scholar 

  • Kharuk VI, Im ST, Dvinskaya ML, Ranson KJ (2010) Climate-induced mountain treeline evolution in southern Siberia. Scand J For Res 25(5):446–454. doi:10.1080/02827581.2010.509329

    Article  Google Scholar 

  • Kharuk VI, Im ST, Oskorbin PA, Petrov IA, Ranson KJ (2013a) Siberian pine decline and mortality in southern Siberian mountains. For Ecol Manag 310:312–320. doi:10.1016/j.foreco.2013.08.042

    Article  Google Scholar 

  • Kharuk VI, Ranson KJ, Oskorbin PA, Im ST, Dvinskaya ML (2013b) Climate induced birch mortality in trans-Baikal lake region, Siberia. For Ecol Manag 289:385–392. doi:10.1016/j.foreco.2012.10.024

    Article  Google Scholar 

  • Kharuk VI, Im ST, Dvinskaya ML, Golukov AS, Ranson KJ (2015a) Climate-induced mortality of spruce stands in Belarus. Environ Res Lett. doi:10.1088/1748-9326/10/12/125006

    Google Scholar 

  • Kharuk VI, Ranson KJ, Im ST, Petrov IA (2015b) Climate-induced larch growth response within central Siberian permafrost zone. Environ Res Lett. doi:10.1088/1748-9326/10/12/125009

    Google Scholar 

  • Kirillov MV, Shherbakov YuA (eds) (1961) Krasnoyarsk region. Krasnoyarsk publishing house, Krasnoyarsk [In Russian]

    Google Scholar 

  • Krylov GV (1961) Forests of West Siberia. AN SSSR, Moscow [In Russian]

    Google Scholar 

  • Lausch A, Heurich M, Fahse L (2013) Spatio-temporal infestation patterns of Ips typographus (L.) in the Bavarian Forest National Park, Germany. Ecol Indic 31:73–81. doi:10.1016/j.ecolind.2012.07.026

    Article  Google Scholar 

  • Lloyd AH, Bunn AG (2007) Responses of the circumpolar boreal forest to 20th century climate variability. Environ Res Lett 2(4): 045013. doi: 10.1088/1748-9326/2/4/045013. http://iopscience.iop.org/1748-9326/2/4/045013. Accessed 22 Apr 2014

  • Long D, Longuevergne L, Scanlon BR (2014) Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites. Water Resour Res 50(2):1131–1151

    Article  Google Scholar 

  • Man’ko YI, Gladkova GA, Butovets GN, Kamibayashi N (1998) An experience of monitoring fir-spruce forest decline in the central Sikhote–Alin. Rus J Forestry 1:3–16 [In Russian]

    Google Scholar 

  • Martínez-Vilalta J, Lloret F, Breshears DD (2012) Drought-induced forest decline: causes, scope and implications. Biol Lett 8(5):689–691. doi:10.1098/rsbl.2011.1059

    Article  Google Scholar 

  • McDowell NG (2011) Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiol 155:1051–1059. doi:10.1104/pp.110

    Article  CAS  Google Scholar 

  • Pavlov IN, Ruhullaeva OV, Barabanova OA, Ageev AA (2008) Estimation of root pathogens impact on forest resources of Siberian federal district. Boreal Zone Conifers 3(4):262–268 [In Russian]

    Google Scholar 

  • Rautiainen M, Heiskanen J, Korhonen L (2012) Seasonal changes in canopy leaf area index and MODIS vegetation products for a boreal forest site in central Finland. Boreal Environ Res 17:72–84

    Google Scholar 

  • Rinn F (1996) TSAP V 3.6 Reference manual: computer program for tree-ring analysis and presentation. Frank Rinn, Heidelberg

  • Russian Federal Agency of Forestry (2013) Annual report about state and exploitation of forests in Russian Federation in 2012. http://www.rosleshoz.gov.ru/docs/other/79. Accessed 28 July 2015 [in Russian]

  • Sazonov AA, Kuhta VN, Blinzov AI, Zvyaginzev VB, Ermohin MV (2013) The problem of large-scale spruce mortality in Belarus, and the ways of its solving. For Wildl 7:10–15 [In Russian]

    Google Scholar 

  • Kharuk VI, Im ST, Petrov IA. “Dark needle conifer” decline in the Baikal Lake region. Contemp probl ecol (accepted)

  • StatSoft Inc. (2013) Electronic statistics textbook. http://www.statsoft.com/textbook. Accessed 29 May 2015

  • Stephenson NL (1990) Climatic control of vegetation distribution: the role of water balance. Am Nat 135:649–670. doi:10.1086/285067

    Article  Google Scholar 

  • Sterl A, Severijns C, Dijkstra H, Hazeleger W, van Oldenborgh GJ, van den Broeke M, Burgers G, van den Hurk B, van Leeuwen PJ, van Velthoven P (2008) When can we expect extremely high surface temperatures? Geophys Res Lett 35(14):L14703. doi: 10.1029/2008GL034071. http://onlinelibrary.wiley.com/doi/10.1029/2008GL034071/pdf. Accessed 22 Apr 2012

  • Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York. http://www.climatechange2013.org. http://www.ipcc.ch. Accessed 22 Apr 2014

  • Utkin AI (1975) Biological productivity of forests: study methods and results. For Silvic 1:9–189 [In Russian]

    Google Scholar 

  • Vasilyauskas V (2013) Main causes of spruce decline in Lithuania. In: The problem of spruce stands decline. Reports of International seminar. Colorpoint Publishing House, Minsk. p 6–21. [In Russian]

  • Vicente-Serrano SM, Beguería S, López-Moreno I (2010) A multiscalar drought index sensitive to global warming. The standardized precipitation evapotranspiration index. J Clim 23:1696–1718. doi:10.1175/2009JCLI2909.1

    Article  Google Scholar 

  • Worrall JJ, Marchetti SB, Egeland L, Mask RA, Eager T, Howell B (2010) Effects and etiology of sudden aspen decline in southwestern Colorado USA. For Ecol Manag 260(5):638–648. doi:10.1016/j.foreco.2010.05.020

    Article  Google Scholar 

  • Yousefpour R, Hanewinkel M, Le Moguédec G (2010) Evaluating the suitability of management strategies of pure norway spruce forests in the black forest area of southwest Germany for adaptation to or mitigation of climate change. Environ Manag 45(2):387. doi:10.1007/s00267-009-9409-2

    Article  Google Scholar 

  • Zamolodchikov DG (2012) An estimate of climate related changes in tree species diversity based on the results of forest fund inventory. Biol Bull Rev 2(2):154–163. doi:10.1134/S2079086412020119

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank anonymous reviewers for valuable comments. This research was supported by Russian Science Fund (RNF) Grant (No. 14-24-00112). K. J. Ranson’s contribution was supported in part by the NASA’s Terrestrial Ecology Program.

Funding

This study was supported by Russian Science Fund (RNF) (Grant No. 14-24-00112). K. J. Ranson’s contribution was supported in part by the NASA’s Terrestrial Ecology Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viacheslav I. Kharuk.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Editor: Christopher Reyer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4548 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharuk, V.I., Im, S.T., Petrov, I.A. et al. Fir decline and mortality in the southern Siberian Mountains. Reg Environ Change 17, 803–812 (2017). https://doi.org/10.1007/s10113-016-1073-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-016-1073-5

Keywords

Navigation