Skip to main content

Advertisement

Log in

Detection and attribution of lake-level dynamics in north-eastern central Europe in recent decades

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

The lake-rich glacial landscapes of north-eastern central Europe play an important role in the preservation and use of water resources, including protection of biodiversity, carbon storage and promotion of tourism. With a view to the last c. 20 years and the future, a regional ‘syndrome of water shortage’ has been frequently stated, which impairs particularly peatlands, flowing waters and lakes. Accordingly, the overall question addressed in this study is: What can regional and local gauging records tell us about decadal hydrological changes of lakes and their catchments? In the study area, most of the gauging records of lakes begin only in the late 1990s. Forty-five lake-level records were analysed by hierarchical agglomerative clustering, looking for the trend in the 1999–2008 time window. The analyses show that lake levels had varying dynamics, namely a negative, unclear or even a positive trend. The proportional shares of these three groups are 23 (51 %) to 15 (34 %) to 7 lakes (15 %), respectively. In group 1, largely groundwater-fed lakes, lake-level changes depend on groundwater-level changes. These are controlled by decreasing groundwater recharge in the catchments, which are caused by specific seasonal weather conditions in the observation period, and the impact of the dominating pine forests, which consume high quantities of water. In group 2, mainly stream lakes, direct human impact drives the lake levels through the management of weirs and ground sills. Nearly all lakes in group 3, consisting of river, stream and spring lakes, were subject to impoundment measures initiated by local rewetting projects. Thus, an important finding with respect to the impact of climate and land use is the fact that the (‘natural’) lakes of the region, primarily fed by groundwater and precipitation, show a predominantly negative lake-level trend in the period studied. Beyond the 10-year-time window analysed, further regional data show that periodic lake-level fluctuations with amplitudes of c. 1–2(–3) m are characteristic for regional groundwater-fed lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adrian R, O’Reilly CM, Zagarese H, Baines SB, Hessen DO, Keller W, Livingstone DM, Sommaruga R, Straile D, van Donk E, Weyhenmeyer GA, Winder M (2009) Lakes as sentinels of climate change. Limnol Oceanogr 54:2283–2297

    Article  Google Scholar 

  • Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (eds) (2008) Climate change and water. Technical paper of the Intergovernmental Panel on Climate Change VI. IPCC Secretariat, Geneva

    Google Scholar 

  • Baumgart A (2011) Sommer-Hochwasser in der Nordvorpommerschen Waldlandschaft. Jahrhundert-Ereignis oder Zeichen des Klimawandels? Nachrichten aus Wald. Forstwirtschaft und Natur Mecklenburg-Vorpommerns 3(2):5–7

  • Blöschl G, Montanari A (2010) Climate change impacts: throwing the dice? Hydrol Process 24:374–381

    Google Scholar 

  • Blume T, Krause S, Meinikmann K, Lewandowski J (2013) Upscaling lacustrine groundwater discharge rates by fiber-optic distributed temperature sensing. Water Resour Res 49:7929–7944

    Article  Google Scholar 

  • Böhme M, Böttcher F, Lefebvre C, Löpmeier F-J, Müller-Westermeier G, Pietzsch S, Riecke W, Schmitt H–H (2011) Die Witterung in Deutschland 2011. In: Wetterdienst D (ed) Klimastatusbericht 2011. Offenbach, Deutscher Wetterdienst, pp 18–47

    Google Scholar 

  • Born SM, Smith SA, Stephenson DA (1979) Hydrogeology of glacial-terrain lakes, with management and planning applications. J Hydrol 43:7–43

    Article  Google Scholar 

  • Conradt T, Koch H, Hattermann FF, Wechsung F (2012) Spatially differentiated management-revised discharge scenarios for an integrated analysis of multi-realisation climate and land use scenarios for the Elbe River basin. Reg Environ Change 12:633–648

    Article  Google Scholar 

  • Crawley MJ (2007) The R book. Wiley, Chichester

    Book  Google Scholar 

  • Cubasch U, Kadow C (2011) Global climate change and aspects of regional climate in the Berlin-Brandenburg region. Erde 142:3–20

    Google Scholar 

  • Dąbrowski M (2004) Trends in changes of lake water levels in the Pomerania Lakeland. Limnol Rev 4:75–80

    Google Scholar 

  • Danilovich I, Lopuch P (2006) Water balance and water regime of the lakes in Belarus. Limnol Rev 6:61–64

    Google Scholar 

  • Dietrich O, Steidl J, Pavlik D (2012) The impact of global change on the water balance of large wetlands in the Elbe Lowland. Reg Environ Change 12:701–713

    Article  Google Scholar 

  • European Environment Agency (EEA) (ed) (2009) Water resources across Europe confronting water scarcity and drought. EEA Report 2, European Environment Agency, Copenhagen

  • Everitt BS, Landau S, Leese M (2001) Cluster analysis, 4th edn. Arnold, London

    Google Scholar 

  • Germer S, Kaiser K, Bens O, Hüttl RF (2011) Water balance changes and responses of ecosystems and society in the Berlin-Brandenburg region: a review. Erde 142:65–95

    Google Scholar 

  • Gerstengarbe F-W, Welzer H (eds) (2013) Zwei Grad mehr in Deutschland. Wie der Klimawandel unseren Alltag verändern wird. Fischer, Frankfurt/Main

    Google Scholar 

  • Hattermann FF, Post J, Krysanova V, Conradt T, Wechsung F (2008) Assessment of water availability in a Central-European river basin (Elbe) under climate change. Adv Clim Change Res 4:42–50

    Google Scholar 

  • Hattermann FF, Weiland M, Huang S, Krysanova V, Kundzewicz Z (2011) Model-supported impact assessment for the water sector in Central Germany under climate change: a case study. Water Resour Manage 25:3113–3134

    Article  Google Scholar 

  • Hendl M (1994) Klima. In: Liedtke H, Marcinek J (eds) Physische Geographie Deutschlands. Perthes, Gotha, pp 23–119

    Google Scholar 

  • Hofmann G (1995) Kiefernökosysteme im Wandel. Der Wald 45:262–267

    Google Scholar 

  • Holsten A, Vetter T, Vohland K, Krysanova V (2009) Impact of climate change on soil moisture dynamics in Brandenburg with a focus on nature conservation areas. Ecol Model 220:2076–2087

    Article  CAS  Google Scholar 

  • Holzbecher E (2001) The dynamics of subsurface water divides: watersheds of Lake Stechlin and neighbouring lakes. Hydrol Process 15:2297–2304

    Article  Google Scholar 

  • Huang S, Krysanova V, Österle H, Hattermann FF (2010) Simulation of spatiotemporal dynamics of water fluxes in Germany under climate change. Hydrol Process 24:3289–3306

    Article  Google Scholar 

  • Huntington TG (2006) Evidence for intensification of the global water cycle: review and synthesis. J Hydrol 319:83–95

    Article  Google Scholar 

  • Hupfer M, Nixdorf B (2011) Zustand und Entwicklung von Seen in Berlin und Brandenburg. Materialien der Interdisziplinären Arbeitsgruppen, IAG Globaler Wandel—Regionale Entwicklung, Diskussionspapier 11. Berlin-Brandenburgische Akademie der Wissenschaften, Berlin

  • Huxol S (2007) Trendanalyse von Zeitreihen der Komponenten des Wasserkreislaufes im Einzugsgebiet der Dreisam zur prozessorientierten Beurteilung hydrologischer Klimafolgen. Diploma Thesis, University Freiburg

  • Jacob D, Göttel H, Kotlarski S, Lorenz P, Sieck K (2008) Klimaauswirkungen und Anpassung in Deutschland – Phase 1: Erstellung regionaler Klimaszenarien für Deutschland. Climate Change 11/08, Umweltbundesamt Dessau

  • Jöhnk KD, Straile D, Ostendorp W (2004) Water level variability and trends in Lake Constance in the light of the 1999 centennial flood. Limnologica 34:15–21

    Article  Google Scholar 

  • Kaiser K, Libra J, Merz B, Bens O, Hüttl RF (eds) (2010) Aktuelle Probleme im Wasserhaushalt von Nordostdeutschland: Trends, Ursachen, Lösungen. Scientific Technical Report STR10/10, GFZ German Research Centre for Geosciences, Potsdam

  • Kaiser K, Friedrich J, Oldorff S, Germer S, Mauersberger R, Natkhin M, Hupfer M, Pingel P, Schönfelder J, Spicher V, Stüve P, Vedder F, Bens O, Mietz O, Hüttl RF (2012a) Aktuelle hydrologische Veränderungen von Seen in Nordostdeutschland: Wasserspiegeltrends, ökologische Konsequenzen, Handlungsmöglichkeiten. In: Grünewald U, Bens O, Fischer H, Hüttl RF, Kaiser K, Knierim A (eds) Wasserbezogene Anpassungsmaßnahmen an den Landschafts- und Klimawandel. Schweizerbart, Stuttgart, pp 148–170

    Google Scholar 

  • Kaiser K, Lorenz S, Germer S, Juschus O, Küster M, Libra J, Bens O, Hüttl RF (2012b) Late Quaternary evolution of rivers, lakes and peatlands in northeast Germany reflecting past climatic and human impact: an overview. E&G Quat Sci J 61:103–132

    Google Scholar 

  • Kendall MG (1975) Rank correlation methods. Griffin, London

    Google Scholar 

  • Kobel J, Spicher V (2010) Entwicklung der Wasserstände ausgewählter Seen und Renaturierung des Wasserhaushaltes im Müritz-Nationalpark, Mecklenburg-Vorpommern. In: Kaiser K, Libra J, Merz B, Bens O, Hüttl RF (eds) Aktuelle Probleme im Wasserhaushalt von Nordostdeutschland: Trends, Ursachen, Lösungen. Scientific Technical Report STR10/10, GFZ German Research Centre for Geosciences, Potsdam, pp 104–109

  • Koch P (2012) Seespiegeldynamik in Nordostdeutschland im Bereich der mecklenburgischen-brandenburgischen Seenplatte. Trends, Ursachen, Auswirkungen. Diploma Thesis, University of Marburg

  • Kundzewicz ZW, Mata LJ, Arnell N, Döll P, Jiménez B, Miller K, Oki T, Sen Z, Shiklomanov I (2008) The implications of projected climate change for freshwater resources and their management. Hydrolog Sci J 53:3–10

    Google Scholar 

  • Lahmer W (2004) Hydrologische Auswirkungen sich ändernder Klimabedingungen im Land Brandenburg. GWF Wasser Abwasser 145:400–412

    Google Scholar 

  • Landesamt für Forsten und Großschutzgebiete Mecklenburg-Vorpommern (LFGMV), Nationalparkamt Müritz (NPAM) (eds) (2004) Nationalparkplan. Teil II Bestandsanalyse, Malchin, Hohenzieritz

    Google Scholar 

  • Landgraf L, Krone A (2002) Wege zur Verbesserung des Landschaftswasserhaushaltes in Brandenburg. GWF Wasser Abwasser 143:435–444

    Google Scholar 

  • Landgraf L, Notni P (2003) Das Moosfenn bei Potsdam – Langzeitstudie zu Genese und Wasserhaushalt eines brandenburgischen Kesselmoores. Telma 33:59–83

    Google Scholar 

  • Ledolter J (2008) A statistical analysis of the lake levels at Lake Neusiedl. Austrian J Stat 37(2):147–160

    Google Scholar 

  • Lischeid G, Natkhin M, Steidl J, Dietrich O, Dannowski R, Merz C (2010) Assessing coupling between lakes and layered aquifers in a complex Pleistocene landscape based on water level dynamics. Adv Water Resour 33:1331–1339

    Article  Google Scholar 

  • Lischeid G, Steidl J, Merz C (2012) Funktionalanalyse versus Trendanalyse zur Abschätzung anthropogener Einflüsse auf Grundwasserganglinien. Grundwasser 17(2):79–89

    Article  CAS  Google Scholar 

  • Luthardt V, Meier-Uhlherr R, Schulz C (2010) Moore unter Wassermangel – Entwicklungstrends ausgewählter naturnaher Moore in den Wäldern des Biosphärenreservats Schorfheide-Chorin unter besonderer Berücksichtigung ihrer naturräumlichen Einbettung und des Witterungsverlaufs der letzten 16 Jahre. Naturschutz und Landschaftspflege in Brandenburg 19:146–157

    Google Scholar 

  • Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259

    Article  Google Scholar 

  • Mauersberger R (2006) Klassifikation der Seen für die Naturraumerkundung des nordostdeutschen Tieflandes. Archiv für Naturschutz und Landschaftsforschung 45:51–89

    Google Scholar 

  • Mauersberger R (2010) Seespiegelanhebung und Grundwasseranreicherung im Naturschutzgroßprojekt „Uckermärkische Seen“(Brandenburg). In: Kaiser K, Libra J, Merz B, Bens O, Hüttl RF (eds) Aktuelle Probleme im Wasserhaushalt von Nordostdeutschland: Trends, Ursachen, Lösungen. Scientific Technical Report STR10/10, GFZ German Research Centre for Geosciences, Potsdam, pp 140–144

  • Merz C, Pekdeger A (2011) Anthropogenic changes in the landscape hydrology of the Berlin-Brandenburg region. Erde 142:21–39

    Google Scholar 

  • Merz B, Maurer T, Kaiser K (2012) Wie gut können wir vergangene und zukünftige Veränderungen des Wasserhaushalts quantifizieren? Hydrol Wasserbewirtsch 56:244–256

    Google Scholar 

  • Mooij WM, Hülsmann S, de Senerpont Domis LN, Nolet BA, Bodelier PLE, Boers PCM, Dionisio Pires LM, Gons HJ, Ibelings BW, Noordhuis R, Portielje R, Wolfstein K, Lammens EHRR (2005) The impact of climate change on lakes in the Netherlands: a review. Aquat Ecol 39:381–400

    Article  CAS  Google Scholar 

  • Müller J (2009) Forestry and water budget of the lowlands in northeast Germany: consequences for the choice of tree species and for forest management. J Water Land Dev 13A:133–148

    Article  Google Scholar 

  • Müller J, Luthardt ME (2009) Wald- und Kiefernland Brandenburg. AFZ Der Wald 54(12):2–4

    Google Scholar 

  • Nationalparkamt Müritz (NPAM) (2010) Jahresbericht 2010. Schwerpunktthema: 20 Jahre Müritz-Nationalpark. Hohenzieritz

  • Natkhin M, Steidl J, Dietrich O, Dannowski R, Lischeid G (2012) Differentiating between climate effects and forest growth dynamics effects on decreasing groundwater recharge in a lowland region in Northeast Germany. J Hydrol 448(449):245–254

    Article  Google Scholar 

  • Reyer C, Bachinger J, Bloch R, Hattermann F, Ibisch P, Kreft S, Lasch P, Lucht W, Nowicki C, Spathelf P, Stock M, Welp M (2012) Climate change adaptation and sustainable regional development: a case study for the Federal State of Brandenburg, Germany. Reg Environ Change 12:523–542

    Article  Google Scholar 

  • Richter D (1997) Das Langzeitverhalten von Niederschlag und Verdunstung und dessen Auswirkungen auf den Wasserhaushalt des Stechlinseegebiets. Berichte des Deutschen Wetterdienstes 201, Offenbach/Main

  • Rinke K, Kuehn B, Bocaniov S, Wendt-Potthoff K, Büttner O, Tittel J, Schultze M, Herzsprung P, Rönicke H, Rink K, Dietze M, Matthes M, Paus L, Friese K (2013) Reservoirs as sentinels of catchments: the Rappbode Reservoir Observatory (Harz Mountains, Germany). Environ Earth Sci 69:523–536

    Article  Google Scholar 

  • Roithmeier O (2008) Vulnerability assessment of lakes in Germany under climate change: A Bayesian network approach. MSc Thesis, Eberswalde University for Sustainable Development

  • Schleupner C (2010) Modeling the implications of climate change for European freshwater wetland distributions: a review of knowledge and gaps. Int J Clim Change Impacts Responses 2:37–62

    Google Scholar 

  • Schumann D (1972) Die Beziehung zwischen Niederschlagshöhe und Wasserstandsänderung in oberirdisch abflusslosen Seen des Norddeutschen Tieflandes. Wasserwirtsch Wassertech 22(2):50–56

    Google Scholar 

  • Stüve P (2010) Die Wasserhaushaltssituation der letzten 40 Jahre im Raum der Neustrelitzer Kleinseenplatte. In: Kaiser K, Libra J, Merz B, Bens O, Hüttl RF (eds) Aktuelle Probleme im Wasserhaushalt von Nordostdeutschland: Trends, Ursachen, Lösungen. Scientific Technical Report STR10/10, GFZ German Research Centre for Geosciences, Potsdam, pp 206–211

  • Succow M, Jeschke L, Knapp H-D (2012) Naturschutz in Deutschland. Rückblicke—Einblicke—Ausblicke. Christoph Links, Berlin

  • Taminskas J, Linkevičienė R, Šimanauskienė R (2007) Impact of climate change on Trakai largest lakes. Limnolog Rev 7:233–239

    Google Scholar 

  • Timmermann T (1999) Sphagnum-Moore in Nordostbrandenburg: Stratigraphisch-hydrodynamische Typisierung und Vegetationswandel seit 1923. Dissertationes Botanicae 305. Cramer, Berlin-Stuttgart

    Google Scholar 

  • Wechsung F, Gerstengarbe F-W, Lasch P, Lüttger A (2008) Die Ertragsfähigkeit ostdeutscher Ackerflächen unter Klimawandel. PIK-Report 112, Potsdam Institute for Climate Impact Research (PIK), Potsdam

  • Williamson CE, Dodds WK, Timothy K, Palmer MA (2008) Lakes and streams as sentinels of environmental change in terrestrial and atmospheric processes. Front Ecol Environ 6:247–254

    Article  Google Scholar 

  • Yue S, Pilon P, Phinney B, Cavadias G (2002) The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol Process 16:1807–1829

    Article  Google Scholar 

  • Zacharias S, Bogena H, Samaniego L, Mauder M, Fuß R, Pütz T, Frenzel M, Schwank M, Baessler C, Butterbach-Bahl K, Bens O, Borg E, Brauer A, Dietrich P, Hajnsek I, Helle G, Kiese R, Kunstmann H, Klotz S, Munch JC, Papen H, Priesack E, Schmid HP, Steinbrecher R, Rosenbaum U, Teutsch G, Vereecken H (2011) A network of terrestrial environmental observatories in Germany. Vadose Zone J 10:955–973

    Article  Google Scholar 

  • Zebisch M, Grothmann T, Schröter D, Hasse C, Fritsch U, Cramer W (2005) Climate change in Germany. Vulnerability and adaptation strategies of climate-sensitive sectors. Umweltbundesamt, Dessau

    Google Scholar 

  • Zentrales Geologisches Institut (ZGI) (ed) (1987) Hydrogeologische Kartierung 1:50.000 (HK50). Berlin

  • Zerbe S, Brande A (2003) Woodland degradation and regeneration in Central Europe during the last 1,000 years: a case study in NE Germany. Phytocoenologia 33:683–700

    Article  Google Scholar 

Download references

Acknowledgments

This research was performed within the projects TERENO and ICLEA of the Helmholtz Association. Therefore, the GFZ German Research Centre for Geosciences (Potsdam) provided much help. Furthermore, we are grateful to the Müritz National Park authority, namely J. Kobel and M. Schwabe (both Hohenzieritz), for their generous support. Sincere thanks go to A. Pingel (State Environmental Agency Brandenburg, Potsdam) for providing the gauging data for Lake Peetschsee and to S. Germer (Potsdam) for helpful comments on an earlier version of the manuscript. Furthermore, we owe two anonymous reviewers constructive suggestions for improvements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Knut Kaiser.

Additional information

Editor: Juan Ignacio Lopez Moreno.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10113_2014_600_MOESM1_ESM.pdf

Online Resource 1: Hydrological, geological and catchment (land cover) characteristics of the lakes analysed. In case of more than one entry in the land-cover and geology columns, the dominant portion is given at front position. In the land-cover column, the terms in brackets refer to only marginal portions. (PDF 59 kb)

10113_2014_600_MOESM2_ESM.pdf

Online Resource 2: Land use in the year 2012 in the catchment of Lake Großer Fürstenseer See (data: ATKIS topographic basis information). The geometries of both the surface and the subterranean catchment area of this lake are given according to Koch (2012). (PDF 869 kb)

10113_2014_600_MOESM3_ESM.pdf

Online Resource 3: Histogram of gauging data availability. The date from when and how many gauges operate are detailed. Note the strong increase in gauges in the late 1990s, which is congruent with the start of our 10-year-time window (1999-2008). (PDF 12 kb)

Online Resource 4: Overlay of lake-level curves for the trend groups derived by cluster analysis. (PDF 449 kb)

10113_2014_600_MOESM5_ESM.pdf

Online Resource 5: Distribution of cluster groups in the study area. The total number of lake-level time series analysed is 45. (PDF 6 kb)

10113_2014_600_MOESM6_ESM.pdf

Online Resource 6: Deviation of annual and seasonal temperature and precipitation from the mean value of the reference period 1961–1990 at Neustrelitz weather station. The lengths of the time series are 110 years (1902–2012). The data were acquired from several sources (DWD, Meteomedia, private). (PDF 23 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaiser, K., Koch, P.J., Mauersberger, R. et al. Detection and attribution of lake-level dynamics in north-eastern central Europe in recent decades. Reg Environ Change 14, 1587–1600 (2014). https://doi.org/10.1007/s10113-014-0600-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-014-0600-5

Keywords

Navigation