Skip to main content
Log in

Weekend–weekday aerosols and geographic variability in cloud-to-ground lightning for the urban region of Atlanta, Georgia, USA

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

We characterized the differences in warm-season weekday and weekend aerosol conditions and cloud-to-ground (CG) flashes (1995–2008) for an 80,000 square kilometer region around Atlanta, Georgia, a city of 5.5 million in the humid subtropics of the southeastern United States. An integration of distance-based multivariate techniques (hierarchical agglomerative clustering, multiresponse permutation procedures, fuzzy kappa statistics, and Mantel tests) indicated a greater concentration of CG flash activity within a 100 km radius around Atlanta under weekday aerosol concentrations. On weekends, these effects contracted toward the city. This minimized any weekly anthropogenic cycle over the more densely populated urban center even though this location had a higher flash density, a higher percentage of days with flashes, and stronger peak currents over the course of a week compared to the surrounding region. The sharper contrasts in weekday and weekend lightning regime developed outside the perimeter of the city over nonurban land uses. Here, lightning on weekend and weekdays differed more in its density, frequency, polarity, and peak current. Across the full extent of the study region, weekday peak currents were stronger and flash days more frequent, suggesting that weekly CG lightning signals have a regional component not tied to a single city source. We integrate these findings in a conceptual model that illustrates the dependency of weekly anthropogenic weather signals on spatial and temporal extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Altaratz O, Koren I, Yair Y, Price C (2010) Lightning response to smoke from Amazonian fires. Geophys Res Lett. doi:10.1029/2010gl042679

    Google Scholar 

  • Andreae MO, Rosenfeld D (2008) Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth Sci Rev 89(1–2):13–41. doi:10.1016/j.earscirev.2008.03.001

    Google Scholar 

  • Ashley WS, Gilson CW (2009) A reassessment of U.S. lightning mortality. B Am Meteorol Soc 90(10):1501–1518. doi:10.1175/2009bams2765.1

    Google Scholar 

  • Barmet P, Kuster T, Muhlbauer A, Lohmann U (2009) Weekly cycle in particulate matter versus weekly cycle in precipitation over Switzerland. J Geophys Res Atmos. doi:10.1029/2008jd011192

    Google Scholar 

  • Baumer D, Vogel B (2007a) An unexpected pattern of distinct weekly periodicities in climatological variables in Germany. Geophys Res Lett 34(3):L03819

    Article  Google Scholar 

  • Baumer D, Vogel B (2007b) An unexpected pattern of distinct weekly periodicities in climatological variables in Germany. Geophys Res Lett. doi:L03819/10.1029/2006gl028559

    Google Scholar 

  • Bell TL, Rosenfeld D, Kim KM, Yoo JM, Lee MI, Hahnenberger M (2008) Midweek increase in US summer rain and storm heights suggests air pollution invigorates rainstorms. J Geophys Res Atmos. doi:10.1029/2007jd008623

    Google Scholar 

  • Bell TL, Rosenfeld D, Kim KM (2009a) Weekly cycle of lightning: evidence of storm invigoration by pollution. Geophys Res Lett. doi:L23805/10.1029/2009gl040915

    Google Scholar 

  • Bell TL, Yoo JM, Lee MI (2009b) Note on the weekly cycle of storm heights over the southeast United States. J Geophys Res Atmos. doi:10.1029/2009jd012041

    Google Scholar 

  • Bentley ML, Ashley WS, Stallins JA (2010) Climatological radar delineation of urban convection for Atlanta, Georgia. Int J Climatol 30(11):1589–1594. doi:10.1002/joc.2020

    Article  Google Scholar 

  • Blanchard CL, Tanenbaum S, Lawson DR (2008) Differences between weekday and weekend air pollutant levels in Atlanta; Baltimore; Chicago; Dallas-Fort Worth; Denver; Houston; New York; Phoenix; Washington, DC; and surrounding areas. J Air Waste Manage 58(12):1598–1615. doi:10.3155/1047-3289.58.12.1598

    Article  CAS  Google Scholar 

  • Bokwa A (2010) Effects of air pollution on precipitation in Krakw (Cracow), Poland in the years 1971-2005. Theor Appl Climatol 101(3–4):289–302. doi:10.1007/s00704-009-0209-7

    Article  Google Scholar 

  • Bornstein R, Lin QL (2000) Urban heat islands and summertime convective thunderstorms in Atlanta: three case studies. Atmos Environ 34(3):507–516

    Article  CAS  Google Scholar 

  • Carey LD, Buffalo KM (2007) Environmental control of cloud-to-ground lightning polarity in severe storms. Mon Weather Rev 135(4):1327–1353

    Article  Google Scholar 

  • Cerveny RS, Balling RC (1998) Weekly cycles of air pollutants, precipitation and tropical cyclones in the coastal NW Atlantic region. Nature 394(6693):561–563

    Article  CAS  Google Scholar 

  • Curran EB, Holle RL, Lopez RE (2000) Lightning casualties and damages in the United States from 1959 to 1994. J Clim 13(19):3448–3464

    Article  Google Scholar 

  • Dark SJ, Bram D (2007) The modifiable areal unit problem (MAUP) in physical geography. Prog Phys Geog 31(5):471–479

    Article  Google Scholar 

  • DeLisi MP, Cope AM, Franklin JK (2001) Weekly precipitation cycles along the northeast corridor? Weather Forecast 16(3):343–353

    Article  Google Scholar 

  • Diem JE (2008) Detecting summer rainfall enhancement within metropolitan Atlanta, Georgia USA. Int J Climatol 28(1):129–133

    Article  Google Scholar 

  • Diem JE, Mote TL (2005) Interepochal changes in summer precipitation in the southeastern United States: evidence of possible urban effects near Atlanta, Georgia. J Appl Meteorol 44(5):717–730

    Article  Google Scholar 

  • Dixon PG, Mote TL (2003) Patterns and causes of Atlanta’s urban heat island-initiated precipitation. J Appl Meteorol 42(9):1273–1284

    Article  Google Scholar 

  • Fan JW, Yuan TL, Comstock JM, Ghan S, Khain A, Leung LR, Li ZQ, Martins VJ, Ovchinnikov M (2009) Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds. J Geophys Res Atmos. doi:10.1029/2009jd012352

    Google Scholar 

  • Farias WRG, Pinto O, Naccarato KP, Pinto I (2009) Anomalous lightning activity over the Metropolitan Region of Sao Paulo due to urban effects. Atmos Res 91(2–4):485–490. doi:10.1016/j.atmosres.2008.06.009

    Article  Google Scholar 

  • Fernandes WA, Pinto IRCA, Pinto O, Longo KM, Freitas SR (2006) New findings about the influence of smoke from fires on the cloud-to-ground lightning characteristics in the Amazon region. Geophys Res Lett. doi:10.1029/2006gl027744

    Google Scholar 

  • Franssen HJH, Kuster T, Barmet P, Lohmann U (2009) Comment on “Winter ‘weekend effect’ in southern Europe and its connection with periodicities in atmospheric dynamics” by A. Sanchez-Lorenzo et al. Geophys Res Lett. doi:L13706/10.1029/2008gl036774

    Google Scholar 

  • Gauthier ML, Petersen WA, Carey LD (2010) Cell mergers and their impact on cloud-to-ground lightning over the Houston area. Atmos Res 96(4):626–632. doi:10.1016/j.atmosres.2010.02.010

    Article  Google Scholar 

  • Hagen A (2003) Fuzzy set approach to assessing similarity of categorical maps. Int J Geogr Inf Sci 17:235–249

    Article  Google Scholar 

  • Hagen-Zanker A, Straatman B, Uljee I (2005) Further developments of a fuzzy set map comparison approach. Int J Geogr Inf Sci 19:769–785

    Article  Google Scholar 

  • Hagen-Zanker A, Engelen G, Hurkens J, Vanhout R, Uljee I (2006) Map comparison kit 3: user manual. Maastricht: Research Institute for Knowledge Systems. Available online: http://www.riks.nl/mck/index.php

  • Han JY, Baik JJ (2008) A theoretical and numerical study of urban heat island-induced circulation and convection. J Atmos Sci 65(6):1859–1877. doi:10.1175/2007jas2326.1

    Article  Google Scholar 

  • Ho CH, Choi YS, Hur SK (2009) Long-term changes in summer weekend effect over northeastern China and the connection with regional warming. Geophys Res Lett. doi:L15706/10.1029/2009gl039509

    Google Scholar 

  • Ivy D, Mulholland JA, Russell AG (2008) Development of ambient air quality population-weighted metrics for use in time-series health studies. J Air Waste Manage 58(5):711–720. doi:10.3155/1047-3289.58.5.711

    Article  CAS  Google Scholar 

  • Jin ML, Shepherd JM, King MD (2005) Urban aerosols and their variations with clouds and rainfall: a case study for New York and Houston. J Geophys Res-Atmos. doi:D10s20/10.1029/2004jd005081

    Google Scholar 

  • Kar SK, Liou YA, Ha KJ (2009) Aerosol effects on the enhancement of cloud-to-ground lightning over major urban areas of South Korea. Atmos Res 92(1):80–87. doi:10.1016/j.atmosres.2008.09.004

    Article  CAS  Google Scholar 

  • Karar K, Gupta AK, Kumar A, Biswas AK, Devotta S (2006) Statistical interpretation of weekday/weekend differences of ambient particulate matter, vehicular traffic and meteorological parameters in an urban region of Kolkata, India. Indoor Built Environ 15(3):235–245. doi:10.1177/1420326x06063877

    Article  CAS  Google Scholar 

  • Khain A, BenMoshe N, Pokrovsky A (2008) Factors determining the impact of aerosols on surface precipitation from clouds: an attempt at classification. J Atmos Sci 65:1721–1748

    Google Scholar 

  • Kim KY, Park RJ, Kim KR, Na H (2010) Weekend effect: anthropogenic or natural? Geophys Res Lett. doi:L09808/10.1029/2010gl043233

    Google Scholar 

  • Koren I, Martins JV, Remer LA, Afargan H (2008) Smoke invigoration versus inhibition of clouds over the Amazon. Science 321(5891):946–949. doi:10.1126/science.1159185

    Article  CAS  Google Scholar 

  • Lacke MC, Mote TL, Shepherd JM (2009) Aerosols and associated precipitation patterns in Atlanta. Atmos Environ 43(28):4359–4373. doi:10.1016/j.atmosenv.2009.04.022

    Article  CAS  Google Scholar 

  • Lal DM, Pawar SD (2009) Relationship between rainfall and lightning over central Indian region in monsoon and premonsoon seasons. Atmos Res 92(4):402–410. doi:10.1016/j.atmosres.2008.12.009

    Article  Google Scholar 

  • Laux P, Kunstmann H (2008) Detection of regional weekly weather cycles across Europe. Environ Res Lett 3(4):044005. doi:10.1088/1748-9326/3/4/044005

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Developments in environmental modelling. Elsevier, Amsterdam

    Google Scholar 

  • Levin Z, Cotton WR (2008) Aerosol pollution impact on precipitation: a scientific review. Springer, Berlin

  • Lyons WA, Nelson TE, Williams ER, Cramer JA, Turner TR (1998) Enhanced positive cloud-to-ground lightning in thunderstorms ingesting smoke from fires. Science 282(5386):77–80

    Article  CAS  Google Scholar 

  • Marani M (2010) The detection of weekly preferential occurrences with an application to rainfall. J Clim 23(9):2379–2387. doi:10.1175/2009jcli3313.1

    Article  Google Scholar 

  • McCune B, Mefford MJ (2009) PC-ORD: multivariate analysis of ecological data Version 5. MjM Software Design, Gleneden Beach

    Google Scholar 

  • Mote TL, Lacke MC, Shepherd JM (2007) Radar signatures of the urban effect on precipitation distribution: a case study for Atlanta, Georgia. Geophys Res Lett. doi:L20710/10.1029/2007gl031903

    Google Scholar 

  • Murphy DM, Capps SL, Daniel JS, Frost GJ, White WH (2008) Weekly patterns of aerosol in the United States. Atmos Chem Phys 8(10):2729–2739

    Article  CAS  Google Scholar 

  • Murray ND, Orville RE, Huffines GR (2000) Effect of pollution from Central American fires on cloud-to-ground lightning in May 1998. Geophys Res Lett 27(15):2249–2252

    Article  CAS  Google Scholar 

  • Naccarato KP, Pinto O, Pinto I (2003) Evidence of thermal and aerosol effects on the cloud-to-ground lightning density and polarity over large urban areas of Southeastern Brazil. Geophys Res Lett. doi:10.1029/2003GL017496

    Google Scholar 

  • National Weather Service (2010) National weather service lightning safety: bolts from the blue. Accessed 29 Nov 2010 [http://www.lightningsafety.noaa.gov/bolt_blue.htm]

  • Natural Resource Spatial Analysis Laboratory (2005) University of Georgia. Accessed 29 Nov 2010 [http://data.georgiaspatial.org/]

  • Niyogi D, Pyle P, Lei M, Arya SP, Kishtawal CM, Shepherd M, Chen F, Wolfe B (2011) Urban Modification of Thunderstorms: An Observational Storm Climatology and Model Case Study for the Indianapolis Urban Region. J Appl Meteorol Clim 50(5):1129–1144

    Article  Google Scholar 

  • Ntelekos AA, Smith JA, Donner L, Fast JD, Gustafson WI, Chapman EG, Krajewski WF (2009) The effects of aerosols on intense convective precipitation in the northeastern United States. Q J R Meteor Soc 135(643):1367–1391. doi:10.1002/qj.476

    Article  Google Scholar 

  • Orville RE (2008) Development of the national lightning detection network. B Am Meteorol Soc 89(2):180–190. doi:10.1175/bams-89-2-180

    Article  Google Scholar 

  • Orville RE, Huffines G, Nielsen-Gammon J, Zhang RY, Ely B, Steiger S, Phillips S, Allen S, Read W (2001) Enhancement of cloud-to-ground lightning over Houston, Texas. Geophys Res Lett 28(13):2597–2600

    Article  Google Scholar 

  • Orville RE, Huffines GR, Burrows WR, Cummins KL (2011) The North American Lightning Detection Network (NALDN)-Analysis of Flash Data: 2001-09. Mon Weather Rev 139(5):1305–1322. doi:10.1175/2010mwr3452.1

    Article  Google Scholar 

  • Petersen WA, Rutledge SA (2001) Regional variability in tropical convection: observations from TRMM. J Clim 14(17):3566–3586

    Article  Google Scholar 

  • Pinto I, Pinto O, Gomes M, Ferreira NJ (2004) Urban effect on the characteristics of cloud-to-ground lightning over Belo Horizonte-Brazil. Ann Geophys 22(2):697–700

    Article  CAS  Google Scholar 

  • Rakov VA (2003) A review of positive and bipolar lightning discharges. B Am Meteorol Soc 84(6):767–776. doi:10.1175/bams-84-6-767

    Article  Google Scholar 

  • Rakov VA, Uman MA (2003) Lightning: physics and effects. Cambridge University Press, Cambridge

  • Ren C, Nga EY, Katzschnerb L (2010) Urban climatic map studies: a review. Int J Climatol. doi:10.1002/joc.2237

  • Rodriguez CAM, da Rocha RP, Bombardi R (2010) On the development of summer thunderstorms in the city of Sao Paulo: mean meteorological characteristics and pollution effect. Atmos Res 96(2–3):477–488. doi:10.1016/j.atmosres.2010.02.007

    Article  Google Scholar 

  • Rose LS, Stallins JA, Bentley ML (2008) Concurrent cloud-to-ground lightning and precipitation enhancement in the Atlanta, Georgia (United States), urban region. Earth Interact 12:30. doi:11/10.1175/2008ei265.1

    Article  Google Scholar 

  • Rosenfeld D, Bell TL (2011) Why do tornados and hailstorms rest on weekends? J Geophys Res-Atmos 116

  • Rosenfeld D, Fromm M, Trentmann J, Luderer G, Andreae MO, Servranckx R (2007) The Chisholm firestorm: observed microstructure, precipitation and lightning activity of a pyro-cumulonimbus. Atmos Chem Phys 7:645–659

    Article  CAS  Google Scholar 

  • Rosenfeld D, Lohmann U, Raga GB, O’Dowd CD, Kulmala M, Fuzzi S, Reissell A, Andreae MO (2008) Flood or drought: how do aerosols affect precipitation? Science 321(5894):1309–1313. doi:10.1126/science.1160606

    Article  CAS  Google Scholar 

  • Rozoff CM, Cotton WR, Adegoke JO (2003) Simulation of St. Louis, Missouri, land use impacts on thunderstorms. J Appl Meteorol 42(6):716–738

    Article  Google Scholar 

  • Rudlosky SD, Fuelberg HE (2010) Pre- and postupgrade distributions of NLDN reported cloud-to-ground lightning characteristics in the contiguous United States. Mon Weather Rev 138(9):3623–3633. doi:10.1175/2010mwr3283.1

    Article  Google Scholar 

  • Saba MMF, Pinto O, Ballarotti MG (2006) Relation between lightning return stroke peak current and following continuing current. Geophys Res Lett. doi:L2380710.1029/2006gl027455

    Google Scholar 

  • Sanchez-Lorenzo A, Calbo J, Martin-Vide J, Garcia-Manuel A, Garcia-Soriano G, Beck C (2008) Winter “weekend effect” in southern Europe and its connections with periodicities in atmospheric dynamics. Geophys Res Lett. doi:L15711/10.1029/2008gl034160

    Google Scholar 

  • Sanchez-Lorenzo A, Calbo J, Martin-Vide J (2009) Reply to comment by H. J. Hendricks Franssen et al. on “Winter ‘weekend effect’ in southern Europe and its connections with periodicities in atmospheric dynamics”. Geophys Res Lett. doi:L13707/10.1029/2009gl038041

    Google Scholar 

  • Saunders C (2008) Charge separation mechanisms in clouds. Space Sci Rev 137(1–4):335–353. doi:10.1007/s11214-008-9345-0

    Article  Google Scholar 

  • Schultz DM, Mikkonen S, Laaksonen A, Richman MB (2007) Weekly precipitation cycles? Lack of evidence from United States surface stations. Geophys Res Lett. doi:L22815/10.1029/2007gl031889

    Google Scholar 

  • Shem W, Shepherd M (2009) On the impact of urbanization on summertime thunderstorms in Atlanta: two numerical model case studies. Atmos Res 92(2):172–189. doi:10.1016/j.atmosres.2008.09.013

    Article  Google Scholar 

  • Shepherd, JM, Stallins JA, Jin ML, Mote TL (2010) Urbanization: impacts on clouds, precipitation, and lightning. In: Aitkenhead-Peterson J, Volder A (eds) Urban ecosystem ecology. Agronomy Monograph 55. American Society of Agronomy, Madison, pp 1–27

  • Shepherd JM, Pierce H, Negri AJ (2002) Rainfall modification by major urban areas: observations from spaceborne rain radar on the TRMM satellite. J Appl Meteorol 41(7):689–701

    Article  Google Scholar 

  • Sheridan SC (2002) The redevelopment of a weather-type classification scheme for North America. Int J Climatol 22(1):51–68. doi:10.1002/joc.709

    Article  Google Scholar 

  • Simmonds I, Keay K (1997) Weekly cycle of meteorological variations in Melbourne and the role of pollution and anthropogenic heat release. Atmos Environ 31(11):1589–1603

    Article  CAS  Google Scholar 

  • Soriano LR, de Pablo F (2002) Effect of small urban areas in central Spain on the enhancement of cloud-to-ground lightning activity. Atmos Environ 36(17):2809–2816

    Article  CAS  Google Scholar 

  • Stallins JA, Bentley ML (2006) Urban lightning climatology and GIS: an analytical framework from the case study of Atlanta, Georgia. Appl Geogr 26(3–4):242–259

    Article  Google Scholar 

  • Stallins JA, Bentley ML, Rose LS (2006) Cloud-to-ground flash patterns for Atlanta, Georgia (USA) from 1992 to 2003. Clim Res 30(2):99–112

    Article  Google Scholar 

  • Steiger SM, Orville RE (2003) Cloud-to-ground lightning enhancement over southern Louisiana. Geophys Res Lett. doi:10.1029/2003GL017923

    Google Scholar 

  • Steiger SM, Orville RE, Huffines G (2002) Cloud-to-ground lightning characteristics over Houston, Texas: 1989-2000. J Geophys Res-Atmos. doi:10.1029/2001JD001142

    Google Scholar 

  • Stevens B, Feingold G (2009) Untangling aerosol effects on clouds and precipitation in a buffered system. Nature 461(7264):607–613. doi:10.1038/nature08281

    Article  CAS  Google Scholar 

  • Storer RL, van den Heever SC, Stephens GL (2001) Modeling aerosol impacts on convection under differing storm environments. J Atmos Sci 67:3904–3915. doi:10.1175/2010JAS3363.1

    Article  Google Scholar 

  • Svoma BM, Balling RC (2009) An anthropogenic signal in Phoenix. Arizona winter precipitation. Theor Appl Climatol 98(3–4):315–321. doi:10.1007/s00704-009-0121-1

    Article  Google Scholar 

  • Tuttle JD, Carbone RE (2011) Inferences of weekly cycles in summertime rainfall. J Geophys Res-Atmos 116:D20213

    Google Scholar 

  • Van Den Heever SC, Cotton WR (2007) Urban aerosol impacts on downwind convective storms. J Appl Meteorol Clim 46(6):828–850

    Article  Google Scholar 

  • Wade K (2005) A descriptive analysis of temporal patterns of air pollution and an assessment of measurement error in pollution monitoring networks in Atlanta, GA. MS thesis. Georgia Institute of Technology, Atlanta, Georgia

  • Westcott NE (1995) Summertime cloud-to-ground lightning activity around major Midwestern Urban Areas. J Appl Meteorol 34(7):1633–1642

    Article  Google Scholar 

  • Yang X, Lo CP (2002) Using a time series of satellite imagery to detect land use and land cover changes in the Atlanta, Georgia metropolitan area. Int J Remote Sens 23(9):1775–1798

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Anthony Stallins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stallins, J.A., Carpenter, J., Bentley, M.L. et al. Weekend–weekday aerosols and geographic variability in cloud-to-ground lightning for the urban region of Atlanta, Georgia, USA. Reg Environ Change 13, 137–151 (2013). https://doi.org/10.1007/s10113-012-0327-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-012-0327-0

Keywords

Navigation