Skip to main content
Log in

Strong duality and sensitivity analysis in semi-infinite linear programming

  • Full Length Paper
  • Published:
Mathematical Programming Submit manuscript

Abstract

Finite-dimensional linear programs satisfy strong duality (SD) and have the “dual pricing” (DP) property. The DP property ensures that, given a sufficiently small perturbation of the right-hand-side vector, there exists a dual solution that correctly “prices” the perturbation by computing the exact change in the optimal objective function value. These properties may fail in semi-infinite linear programming where the constraint vector space is infinite dimensional. Unlike the finite-dimensional case, in semi-infinite linear programs the constraint vector space is a modeling choice. We show that, for a sufficiently restricted vector space, both SD and DP always hold, at the cost of restricting the perturbations to that space. The main goal of the paper is to extend this restricted space to the largest possible constraint space where SD and DP hold. Once SD or DP fail for a given constraint space, then these conditions fail for all larger constraint spaces. We give sufficient conditions for when SD and DP hold in an extended constraint space. Our results require the use of linear functionals that are singular or purely finitely additive and thus not representable as finite support vectors. We use the extension of the Fourier–Motzkin elimination procedure to semi-infinite linear systems to understand these linear functionals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis: A Hitchhiker’s Guide, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  2. Anderson, E.J., Nash, P.: Linear Programming in Infinite-Dimensional Spaces: Theory and Applications. Wiley, New York (1987)

    MATH  Google Scholar 

  3. Basu, A., Martin, K., Ryan, C.T.: On the sufficiency of finite support duals in semi-infinite linear programming. Oper. Res. Lett. 42(1), 16–20 (2014)

    Article  MathSciNet  Google Scholar 

  4. Basu, A., Martin, K., Ryan, C.T.: Projection: a unified approach to semi-infinite linear programs and duality in convex programming. Math. Oper. Res. 40, 146–170 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  5. Charnes, A., Cooper, W.W., Kortanek, K.: Duality in semi-infinite programs and some works of Haar and Carathéodory. Manag. Sci. 9(2), 209–228 (1963)

    Article  MATH  Google Scholar 

  6. Charnes, A., Cooper, W.W., Kortanek, K.O.: On representations of semi-infinite programs which have no duality gaps. Manag. Sci. 12(1), 113–121 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  7. Duffin, R.J., Karlovitz, L.A.: An infinite linear program with a duality gap. Manag. Sci. 12(1), 122–134 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  8. Glashoff, K.: Duality theory of semi-infinite programming. In: Hettich, R. (ed.) Semi-Infinite Programming. Lecture Notes in Control and Information Sciences, vol. 15, pp. 1–16. Springer (1979)

  9. Glashoff, K., Gustafson, S.: Linear Optimization and Approximation: An Introduction to the Theoretical Analysis and Numerical Treatment of Semi-infinite Programs. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  10. Goberna, M.A., Gómez, S., Guerra, F., Todorov, M.I.: Sensitivity analysis in linear semi-infinite programming: perturbing cost and right-hand-side coefficients. Eur. J. Oper. Res. 181(3), 1069–1085 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Goberna, M.A., González, E., Martínez-Legaz, J.E., Todorov, M.I.: Motzkin decomposition of closed convex sets. J. Math. Anal. Appl. 364(1), 209–221 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Goberna, M.A., López, M.A.: Linear Semi-Infinite Optimization. Wiley, New York (1998)

    MATH  Google Scholar 

  13. Goberna, M.A., López, M.A.: Post-Optimal Analysis in Linear Semi-Infinite Optimization. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  14. Goberna, M.A., Terlaky, T., Todorov, M.I.: Sensitivity analysis in linear semi-infinite programming via partitions. Math. Oper. Res. 35(1), 14–26 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Haar, A.: Uber lineare ungleichungen. Acta Math. Szeged 2, 1–14 (1924)

    MATH  Google Scholar 

  16. Hettich, R., Kortanek, K.O.: Semi-infinite programming: theory, methods, and applications. SIAM Rev. 35(3), 380–429 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  17. Holmes, R.B.: Geometric Functional Analysis and its Applications. Springer, Berlin (1975)

    Book  MATH  Google Scholar 

  18. Karney, D.F.: Duality gaps in semi-infinite linear programming—an approximation problem. Math. Program. 20(1), 129–143 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  19. Karney, D.F.: A pathological semi-infinite program verifying Karlovitz’s conjecture. J. Optim. Theory Appl. 38(1), 137–141 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  20. Karney, D.F.: In a semi-infinite program only a countable subset of the constraints is essential. J. Approx. Theory 20, 129–143 (1985)

    MATH  MathSciNet  Google Scholar 

  21. Kortanek, K.O., Zhang, Q.: Extending the mixed algebraic-analysis Fourier–Motzkin elimination method for classifying linear semi-infinite programmes. Optimization 65(4), 1–21 (2015)

  22. Martin, K., Ryan, C.T., Stern, M.: The Slater conundrum: duality and pricing in infinite-dimensional optimization. SIAM J. Optim. 26(1), 111–138 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  23. Ponstein, J.P.: On the use of purely finitely additive multipliers in mathematical programming. J. Optim. Theory Appl. 33(1), 37–55 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  24. Shapiro, A.: Semi-infinite programming, duality, discretization and optimality conditions. Optimization 58(2), 133–161 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. Zhang, Q.: Strong duality and dual pricing properties of semi-infinite linear programming—a non-Fourier–Motzkin elimination approach. Technical report. http://www.optimization-online.org/DB_FILE/2016/02/5322.pdf (2016)

Download references

Acknowledgments

We are grateful for the helpful comments of the associate editor and reviewer that have improved the manuscript. We thank Qinhong Zhang for his careful reading of an earlier version of the paper and pointing out in [25] an error in the proof of our Theorem 4.3, which is now corrected. This paper also benefited from discussions with T.T.A. Nghia. The first author gratefully acknowledges support from NSF Grant CMMI1452820. The third author thanks the University of Chicago Booth School of Business for its generous research support and the hospitality of the Research Center for Management Science and Information Analytics at the Shanghai University of Finance and Economics for hosting him for an extended research stay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Thomas Ryan.

Appendix

Appendix

This appendix contains three technical lemmas used in the proof of Theorem 5.13.

Lemma 7.1

Let \(b^1, b^2 \in \mathbb R^I\) such that \(OV(b^1)<\infty ,\) \(OV(b^2) < \infty \) and denote \({\tilde{b}}^1 = \overline{FM}(b^1)\) and \({\tilde{b}}^2 = \overline{FM}(b^2)\). Suppose \(\{h_m\}_{m\in \mathbb N}\) is a sequence in \(I_4\) such that \(\lim _{m\rightarrow \infty } {\tilde{b}}^j(h_m) = L(b^j)\) for \(j=1,2\) and \(\lim _{m\rightarrow \infty } \sum _{k=\ell }^n |{\tilde{a}}^k(h_m)| \rightarrow 0\). Then for every \(\lambda \in [0,1], b_\lambda := \lambda b^1 + (1-\lambda )b^2\) has the property that

$$\begin{aligned} \lim _{m\rightarrow \infty } {\tilde{b}}_\lambda (h_m) = L(b_\lambda ) = \lambda L(b_1) + (1-\lambda )L(b_2), \end{aligned}$$

where \( {\tilde{b}}_\lambda = \overline{FM}(b_\lambda )\).

Moreover, suppose \(\{h_m\}_{m\in \mathbb N}\) is a sequence in \(I_3\) such that \(\lim _{m\rightarrow \infty } {\tilde{b}}^j(h_m) = S(b^j)\) for \(j=1,2\). Then for every \(\lambda \in [0,1], b_\lambda := \lambda b^1 + (1-\lambda )b^2\) has the property that

$$\begin{aligned} \lim _{m\rightarrow \infty } {\tilde{b}}_\lambda (h_m) = S(b_\lambda ) = \lambda S(b_1) + (1-\lambda )S(b_2), \end{aligned}$$

where \( {\tilde{b}}_\lambda = \overline{FM}(b_\lambda )\).

Proof

By Lemma 3.7 L is sublinear and therefore convex which implies

$$\begin{aligned} \begin{array}{rcl} L(b_\lambda ) &{}\le &{}\lambda L(b^1) + (1-\lambda )L(b^2) \\ &{} = &{} \lambda \lim _{m\rightarrow \infty } {\tilde{b}}^1(h_m) + (1-\lambda )\lim _{m\rightarrow \infty } {\tilde{b}}^2(h_m) \\ &{} = &{} \lim _{m\rightarrow \infty } (\lambda {\tilde{b}}^1(h_m) + (1-\lambda ){\tilde{b}}^2(h_m))\\ &{} \le &{} L(\lambda b^1 + (1-\lambda )b^2)\\ &{} = &{} L(b_\lambda ), \end{array} \end{aligned}$$

where the second inequality follows from Lemma 3.9.

Thus, all the inequalities in the above are actually equalities. In particular, \(\lim _{m\rightarrow \infty } (\lambda {\tilde{b}}^1(h_m) + (1-\lambda )b^2(h_m)) = L(b_\lambda ) = \lambda L(b_1) + (1-\lambda )L(b_2)\). Since \(\overline{FM}\) is a linear operator, \(\overline{FM}(b_\lambda ) = \lambda \overline{FM}(b^1) + (1-\lambda ) \overline{FM}(b^2)\) and so \({\tilde{b}}_\lambda (h_m) = \lambda {\tilde{b}}^1(h_m) + (1-\lambda )b^2(h_m)\) for all \(m \in \mathbb N\). Hence, \(\lim _{m\rightarrow \infty } {\tilde{b}}_\lambda (h_m) = \lim _{m\rightarrow \infty } (\lambda {\tilde{b}}^1(h_m) + (1-\lambda )b^2(h_m)) = L(b_\lambda )\).

For the second part of the result concerning S, completely analogous reasoning (except now \(\left\{ h_m\right\} \) is a sequence in \(I_3\) instead of \(I_4\) and we use Lemma 3.10 instead of Lemma 3.9) shows \(\lim _{m\rightarrow \infty } {\tilde{b}}_\lambda (h_m) = S(b_\lambda )\). \(\square \)

Lemma 7.2

Let \(b, d \in \ell _\infty (I)\) such that \(OV(b) < \infty , OV(d) < \infty \) and \(-\infty < L(b), L(b+d) < \infty .\) Assume DP.2 and that \(\overline{FM}(\ell _\infty (I)) \subseteq \ell _\infty (H)\). Then there exists \({\hat{\epsilon }} > 0\) and a sequence \(\{h_m\}_{m\in \mathbb N} \subseteq I_4\) such that for all \(\epsilon \in [0,{\hat{\epsilon }}]\):

$$\begin{aligned} {\tilde{d}}_{\epsilon } (h_m) \rightarrow L(b + \epsilon d) \text { and } \sum _{k=\ell }^{n} |\tilde{a}^k(h_m)| \rightarrow 0, \end{aligned}$$

where \({\tilde{d}}_{\epsilon } := \overline{FM}(b + \epsilon d)\).

Proof

Define

$$\begin{aligned} \alpha := L(b) - \sup \{ \limsup \{\tilde{b} (h_{m})\}_{m \in \mathbb N} : \{h_{m}\}_{m \in \mathbb N} \in {\mathcal {H}}_L \}. \end{aligned}$$

By hypothesis, \(-\infty < L(b) < \infty \) so \(I_{4}\) is not empty and then by assumption DP.2 \(\alpha \) is a positive real number.

  1. 1.

    Since \({\tilde{d}} = \overline{FM}(d) \in \ell _\infty (H)\) there exists \({\hat{\epsilon }} > 0\) such that

    $$\begin{aligned} {\hat{\epsilon }} \sup _{h \in I_4} | {\tilde{d}}(h)| < \frac{\alpha }{3}. \end{aligned}$$
  2. 2.

    Claim: \(L(b) - \frac{\alpha }{3} \le L(b + {\hat{\epsilon }} d) \le L(b) + \frac{\alpha }{3}\). Proof:

    $$\begin{aligned} \begin{array}{rcl} L(b + {\hat{\epsilon }} d) &{} = &{}\lim _{\delta \rightarrow \infty }\sup \left\{ \tilde{b}(h) + {\hat{\epsilon }}{\tilde{d}}(h)- \delta \sum _{k=\ell }^{n} |\tilde{a}^k(h)| \, : \, h \in I_4 \right\} \\ &{}\ge &{}\lim _{\delta \rightarrow \infty }\sup \left\{ \tilde{b}(h) - \frac{\alpha }{3} - \delta \sum _{k=\ell }^{n} |\tilde{a}^k(h)| \, : \, h \in I_4 \right\} \\ &{} = &{} \lim _{\delta \rightarrow \infty }\sup \left\{ \tilde{b}(h) - \delta \sum _{k=\ell }^{n} |\tilde{a}^k(h)| \, : \, h \in I_4 \right\} - \frac{\alpha }{3} \\ &{} = &{} L(b) -\frac{\alpha }{3}. \end{array} \end{aligned}$$
    (7.1)

    Similarly, one can show \(L(b + {\hat{\epsilon }} d) \le L(b) + \frac{\alpha }{3}\).

  3. 3.

    Consider \(\overline{FM}(b + {\hat{\epsilon }} d) = \overline{FM}(b) + {\hat{\epsilon }} \overline{FM}(d) = {\tilde{b}} + {\hat{\epsilon }}{\tilde{d}}.\) By Claim 2, \(L(b + {\hat{\epsilon }} d)\) is finite. By Lemma 3.9, there exists a sequence \(\{h'_m\}\) such that \({\tilde{b}}(h'_m) + {\hat{\epsilon }}{\tilde{d}}(h'_m) \rightarrow L(b + {\hat{\epsilon }} d)\) and \(\sum _{k=\ell }^{n} |\tilde{a}^k(h'_m)| \rightarrow 0\).

  4. 4.

    Claim: \(\limsup \{ {\tilde{b}}(h'_m) \}_{m \in \mathbb N} = L(b).\) Proof: first show \(\limsup \{ {\tilde{b}}(h'_m) \}_{m \in \mathbb N} \le L(b).\) If

    $$\begin{aligned} \limsup \{ {\tilde{b}}(h'_m) \}_{m \in \mathbb N} > L(b) \end{aligned}$$

    then there is subsequence of indices \(\{ h^{\prime \prime } \}_{m \in \mathbb N}\) from \(\{ h^{\prime } \}_{m \in \mathbb N}\) such that \(\lim _{m \rightarrow \infty }{\tilde{b}}(h''_m) > L(b).\) But \(\sum _{k=\ell }^{n} |\tilde{a}^k(h'_m)| \rightarrow 0\) so \(\sum _{k=\ell }^{n} |\tilde{a}^k(h''_m)| \rightarrow 0.\) This directly contradicts Lemma 3.9 so we conclude \(\limsup \{ {\tilde{b}}(h'_m) \}_{m \in \mathbb N} \le L(b).\)

Since \(\limsup \{ {\tilde{b}}(h'_m) \}_{m \in \mathbb N} \le L(b)\) it suffices to show \(\limsup \{ {\tilde{b}}(h'_m) \}_{m \in \mathbb N} = L(b)\) by showing \(\limsup \{ {\tilde{b}}(h'_m) \}_{m \in \mathbb N}\) cannot be strictly less than L(b). From Step 3. above, we know \(\{ {\tilde{b}}(h'_m) + {\hat{\epsilon }}{\tilde{d}}(h'_m) \}_{m \in \mathbb N}\) is a sequence that converges to \(L(b + {\hat{\epsilon }} d).\) This implies

$$\begin{aligned} L(b + {\hat{\epsilon }} d)= & {} \lim _{m \rightarrow \infty } \left( {\tilde{b}}(h'_m) + {\hat{\epsilon }}{\tilde{d}}(h'_m) \right) \end{aligned}$$
(7.2)
$$\begin{aligned}= & {} \limsup \left\{ {\tilde{b}}(h'_m) + {\hat{\epsilon }}{\tilde{d}}(h'_m) \right\} _{m \in \mathbb N} \end{aligned}$$
(7.3)
$$\begin{aligned}\le & {} \limsup \left\{ {\tilde{b}}(h'_m)\right\} _{m \in M} + \limsup \left\{ {\hat{\epsilon }}{\tilde{d}}(h'_m) \right\} _{m \in \mathbb N} \end{aligned}$$
(7.4)
$$\begin{aligned}< & {} \limsup \left\{ {\tilde{b}}(h'_m) \right\} _{m \in M} + \frac{\alpha }{3}. \end{aligned}$$
(7.5)

If \(\limsup \{ {\tilde{b}}(h'_m) \}_{m \in \mathbb N} < L(b),\) then by definition of \(\alpha \),

$$\begin{aligned} \limsup \{ {\tilde{b}}(h'_m) \}_{m \in \mathbb N} \le L(b) - \alpha . \end{aligned}$$

Then from (7.2) to (7.5)

$$\begin{aligned} L(b + {\hat{\epsilon }} d) < \limsup \{ {\tilde{b}}(h'_m) \}_{m \in M} + \frac{\alpha }{3} \le L(b) - \alpha + \frac{\alpha }{3} = L(b) - \frac{2}{3}\alpha , \end{aligned}$$

which cannot happen since from Step 2, \(L(b + {\hat{\epsilon }} d) \ge L(b) - \frac{\alpha }{3} > L(b) - \frac{2}{3} \alpha .\) Therefore \(\limsup \{ {\tilde{b}}(h'_m) \}_{m \in \mathbb N} = L(b).\) Then by Lemma 3.9 there is subsequence of indices \(\{ h^{\prime \prime } \}_{m \in \mathbb N}\) from \(\{ h^{\prime } \}_{m \in \mathbb N}\) such that

$$\begin{aligned} \begin{array}{l} {\tilde{b}}(h''_m) \rightarrow L(b) \text { and }\\ \sum _{k=\ell }^{n} |\tilde{a}^k(h''_m)| \rightarrow 0 \end{array} \end{aligned}$$

and from Claim 3 since \(\{ h^{\prime \prime } \}_{m \in \mathbb N}\) is a subsequence from \(\{ h^{\prime } \}_{m \in \mathbb N}\)

$$\begin{aligned} \begin{array}{l} {\tilde{b}}(h''_m) + {\hat{\epsilon }} {\tilde{d}}(h''_m) \rightarrow L(b + {\hat{\epsilon }} d) \text { and } \\ \sum _{k=\ell }^{n} |\tilde{a}^k(h''_m)| \rightarrow 0. \end{array} \end{aligned}$$

5. Claim:

$$\begin{aligned} \begin{array}{l} {\tilde{b}}(h''_m) + \epsilon {\tilde{d}}(h''_m) \rightarrow L(b + \epsilon d) \text { and } \\ \sum _{k=\ell }^{n} |\tilde{a}^k(h''_m)| \rightarrow 0. \end{array} \end{aligned}$$

holds for all \(\epsilon \in [0,{\hat{\epsilon }}]\). Proof: this is because for every \(\epsilon \in [0, {\hat{\epsilon }}], b + \epsilon d\) is a convex combination of the sequences b and \(b + \hat{\epsilon } d\). The claim follows by applying Lemma 7.1 with \(b^1 = b\) and \(b^2 = b + {\hat{\epsilon }} d\). \(\square \)

Lemma 7.3 is an analogous result for sequences in \(I_{3}\) converging to S(b).

Lemma 7.3

Let \(b, d \in \ell _\infty (I)\) such that \(OV(b) < \infty , OV(d) < \infty \) and \(-\infty < S(b), S(b+d) < \infty .\) Assume DP.1 and \(\overline{FM}(\ell _\infty (I)) \subseteq \ell _\infty (H)\). Then there exists \({\hat{\epsilon }} > 0\) and a sequence \(\{h_m\}_{m\in \mathbb N} \subseteq I_3\) such that for all \(\epsilon \in [0,{\hat{\epsilon }}]\):

$$\begin{aligned} {\tilde{d}}_{\epsilon } (h_m) \rightarrow S(b + \epsilon d), \end{aligned}$$

where \({\tilde{d}}_{\epsilon } := \overline{FM}(b + \epsilon d)\).

Proof

The proof is analogous to Lemma 7.2. Replace L with \(S, I_4\) with \(I_3\), and redefine \(\alpha \) as

$$\begin{aligned} \alpha := S(b) - \sup \{ \limsup \{\tilde{b} (h_{m})\}_{m \in \mathbb N} : \{h_{m}\}_{m \in \mathbb N} \in {\mathcal {H}}_S \}. \end{aligned}$$

By hypothesis, \(-\infty < S(b) < \infty \) so \(I_{3}\) is not empty and then by assumption DP.1, \(\alpha \) is a positive real number. The result follows from DP.1 and noting \(\sum _{k=\ell }^{n} |\tilde{a}^k(h_m)| = 0\) for all sequences \(\left\{ h_m\right\} \) in \(I_3.\) \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basu, A., Martin, K. & Ryan, C.T. Strong duality and sensitivity analysis in semi-infinite linear programming. Math. Program. 161, 451–485 (2017). https://doi.org/10.1007/s10107-016-1018-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-016-1018-2

Keywords

Mathematics Subject Classification

Navigation